
A Truant Failure Detection Algorithm
for Mult i-Policy Distributed Systems

Yoshifumi Manabe Shigemi Aoyagi

NTT Basic Research Laboratories
3- 1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan

Abstract

In recent autonomous decentralized systems, every
node might not execute the same algorithm because it
might have i ts own local policy and follow that pol-
icy rather than the common principle. In this paper,
we model these systems as a multi-policy distributed
system. W e introduce a new type of failure, a truant
failure, on multi-policy distributed systems, which i s
considered to be the simplest local policy. A truant
failure node does nothing fo r the other nodes’ requests
selected by i ts local policy. This paper shows a condi-
tion to be able to detect a truant failure and presents a
distributed truant failure detection algorithm f o r that
case.

1 Introduction

In a distributed system developed within one orga-
nization (i.e., one university or one company) it can be
assumed that all of its subsystems obey the same rules.
Most distributed algorithms, therefore, assume that
every node executes the same program [14]. Though
there are some cases where special nodes execute dif-
ferent programs, the execution is contingent upon all
the other nodes’ permission.

This assumption does not hold for current au-
tonomous decentralized systems where subsystems are
spread out among various organizations. Each subsys-
tem obeys its organization’s rule and might not obey
the common rule. There is no control over the diver-
sification.

For example, consider a routing problem in an in-
ternet [ll]. The unit of routing is called an AS (Au-
tonomous System). The ASS are connected by a net-
work. Each AS must maintain its routing table. The
table consists of pairs of a destination AS and the
route to it. No AS knows the whole topology of the
network. The ASS obtain the routing table as follows.

First, each AS sets the route from itself to neighbor-
ing ASS. It then sends the routing information to its
neighbors and receives routing information from them.
From the received routing information, it can set the
route from itself to ASS whose distance is less than
two. The AS continues sending and receiving rout-
ing information between neighboring ASS and obtains
routes to distant ASS. This procedure is the common
rule of maintaining a routing table.

In maintaining a routing table, policy routing al-
lows each AS to decide routes and control the for-
warding of routing information according to its local
policy [2]. For example, even if the path from AS X
to AS Y via AS Z is longer than the one via AS W ,
X can select the path via Z as the route to Y be-
cause of X’s preference unknown to the others. In
addition, if X does not want to send some routing in-
formation to neighbor 2, it can stop forwarding infor-
mation. Some protocols for policy routing have been
proposed. BGP (Border Gateway Protocol) is one of
such protocol [lo].

Now let us consider the following case where BGP
is used. If all neighboring ASS of AS Z stop forward-
ing routing information to Z, Z cannot get enough
information to send messages to any other AS. BGP
does not define how each AS selects its routing policy,
so there is no way to detect or avoid this undesir-
able situation. This problem cannot be considered in
the context of current distributed algorithms. As a
basis for solving it, a new theoretical model of such
distributed systems is therefore necessary.

This paper proposes a multi-policy distributed sys-
tem as a model of distributed systems in which each
subsystem works on different execution principles. It
can model the above route preference policy and for-
ward stopping policy in BGP.

Each node can have various kinds of local policies.
As one of the most fundamental local policy, we con-
sider a truant failure. A truant failure node does noth-

297
0-8186-7087-8/95 $4.00 Q 1995 IEEE

ing for the other nodes’ requests selected by its local
policy. This paper shows a condition to be able to de-
tect a truant failure and presents a distributed truant
failure detection algorithm for that case.

Section 2 presents the model of multi-policy dis-
tributed systems. In Section 3, the truant failure de-
tection algorithm is shown. Section 4 mentions issues
for further study.

2.

2 Multi-policy distributed system
model

A multi-policy distributed system is defined as a
tuple (N, P, LP) , where N is the network topology, P
is the set of distributed problems that must be solved
on the network, and LP is the policy for each process.
As will be shown below, the definition of N and each
problem in P is the same as that for distributed alge
rithms [14]. N is a tuple (G , K) , where G = (V , E)
is a undirected graph and K is network information.
The nodes in V represent processors and the edges in
E represent bidirectional communication lines. Com-
munication between nodes is done by message passing
over the edges. Each edge is assumed to be error-free,
and FIFO (First-In, First-Out). The message trans-
mission delay on an edge is arbitrary but finite, that is,
the communication is asynchronous. Node vi has a list
of its adjacent edge set adj-list(vi), though vi might
not know the node connected by each edge. Network
information K is the set of knowledge each node has of
network topology. For example, K = {G is a ring.}.

A distributed problem p must be solved on N .
Some (arbitrary, but not empty) set of nodes receives a
locally originated request. The request means “Start
solving p ” . The nodes begin to solve p. The other
nodes begin to solve p by receiving a message from
another node. The nodes execute the same algorithm.
When the execution is terminated, p is solved.

In this paper, we assume that there is a set of prob-
lems (P) to solve. As shown in Theorem 1, if there
is only one problem to solve and a node executes by
its local policy, it is impossible for other nodes to de-
tect the fact. Note that several problems might be
solved simultaneously. For a message m, let p(m) be
the problem for which m is sent to solve. The initia-
tion of problem solving is the same as in conventional
distributed algorithms. Each node executes as follows:

1. There is an algorithm A = (AS, AM, A I) to solve
the problem set P . AS is a function S x M -+ S,
where S is the set of internal states and M is the
set of the tuple (c, m) of a message and the edge

it passes. AM is a function S x M -+ 2M. AI E S
is the initial state. AS defines the internal state
transition and AM defines the message sending
on each node. A is common to all nodes.

Note that A might be parameterized by the iden-
tifier of each node and thus the algorithm might
differ among nodes.

Node vi E V has its local policy LPi =
(LPSi, LPMi, LPIi). LPSi, LPMi are functions
from S x M x S x 2M -+ {true, false}. LPIi E S
is the initial state of vi. LPI, might be different
from AI.

If vi receives a (locally originated or neighbor-
originated) message m when vi’s current state is
si, the next state si is defined as

SA

si
if LPSi(si, (c, m), SA, MA) = true
if LPSj(si, (c , m), SA, MA) = false

s; =

where SA = AS(si,(c,m)) and MA =
AM(si , (c , m)) . The sending message set M’ is
defined as

MA if LPMi(si, (c, m), SA, MA) = true
M’ = { 4 if LPMi(Si, (C , m), SA, MA) = false

Here, 4 means that vi sends no messages.

When vi receives a message m, vi changes its state
only if LPSi allows the state transition. Similarly,
vi sends messages only if LPMi allows the message
transmission.

A node with its own local policy can also be con-
sidered a node with a failure. A node without a fail-
ure can be considered as LPSi = LPMi = true and
LPIi = AI. In conventional distributed algorithms,
the most common failures are crash failure, omission
failure [4], and Byzantine failure [SI. A static crash
failure node can be considered a node that satisfies
LPSi = LPMi = false. Thus, static crash failure
can be considered as a special case of multi-policy dis-
tributed systems.

Nodes with omission failure do nothing for some
messages. The difference between omission failure and
local policy is that a node with a local policy acts
deterministically, i.e., it does nothing for fixed situa-
tions. On the other hand, an omission failure node
acts non-determistically in that it may do nothing in
any situations: Thus, a local policy can be considered
as a special case of omission failure.

The nodes with Byzantine failure try to prevent
other nodes from solving P. They might send false

298

messages intentionally. Byzantine failure is theoreti-
cally the worst kind. Since an algorithm that can tol-
erate Byzantine failures can tolerate any other type of
failures, Byzantine failure has been widely discussed.
However, algorithms that tolerate omission or Byzan-
tine failure do not exist for most cases, especially when
the communication is asynchronous [5] [SI.

Our model of multi-policy distributed systems
therefore does not consider omission failure or Byzan-
tine failure nodes. Our model is intended as a basis
for discussing more realistic cases.

Let us consider the routing example again. The pol-
icy routing can be expressed by this model. Assume
that A is the conventional routing algorithm where
each node uses the shortest path to another node and
sends all of its routing information to all neighboring
nodes. BGP allows each node to select the route, even
if it is longer than the shortest path. This policy can
be expressed by LPSi as follows:
LPSi(si, (c , m), SA, M A) = fa l se if p(m) =‘routing)
and SA sets a non-preferable route as the new route.

BGP also allows each node to stop forwarding rout-
ing information. This policy can be expressed by
LPMi as follows:
LPMi(si, (c , m), SA, M A) = f a k e if p(m) =‘ routing’
and MA contains a non-preferable routing informa-
tion.

Many kinds of other local policies can be consid-
ered. Some examples are:

Truant: A node does nothing for problems that
it does not want to do.

No spontaneous execution: A node does nothing
spontaneously.

No update: A node continues using old data even
if other nodes indicate it is old since it thinks the
correction might cause worse side effects.

With the above local policies, the nodes might not be
able to solve P . Thus it is necessary to detect whether
the local policies obstruct the solving of P and how the
obstruction can be avoided. For the first step of the
detection problem, we consider the case of the truant
policy which is considered as the most simple local
policy.

3 An algorithm t o detect truant failure

This section discusses a truant failure detection
problem. Some definitions are given for preparation.
First we define a truant failure.

Definition 1

truant failure node vi is L P S i (s i , (c , m) , s A , M ~) =

where Fi : P -+ { t r u e , f a l s e } is vi’s truant function.

The local policy LPi = (LPSi, LPMi, LPIi) Of a

LPMi(si, (C , m), SA, MA) = Fi(p(m)), LPIi = AI,

Truant failure nodes execute A for problem p that sat-
isfies Fi(p) = true and do nothing for problem p that
satisfies Fi(p) = fa l se . Generally, there is no algo-
rithm for detecting a truant failure node. This is set
forth the following theorem.

Theorem 1 If there is a node vi that satisfies Fi(p) =
fa l se for a l lp E P , there is no algorithm to detect that

m a node is a truant failure node.

The proof for Theorem 1 is similar to that of the reach-
ing agreement in asynchronous systems [5].
(Proof) Consider the following two cases.

(1) Fi(p) = fa l se for all p E P .
(2) F i b) = true for all p E P and the communi-

cation delay between vi and its neighboring nodes is
very long.

There is no way for vi’s neighboring nodes to dis-
tinguish these two cases within a finite time.

If Fi(p) = f a l s e for all p E P, there is no value for
vi to be a member of a distributed system. Thus, such
a node does not exist in most cases.

On the other hand, if there is another problem
p’ E P that satisfies Fi(p‘) = true and its existence is
known to the other nodes (the fact Fi(p’) = t rue can
be easily detected by receiving a message of p’ from
vi) , there can be a case for the other nodes to detect
whether Fi(p) = fa l se by using messages for p’. The-
orem 2 gives a sufficient condition to be able to detect
it.

For preparation, we give some definitions and as-
sumptions.

Assumption 1 Each message m includes the value
of p (m) . No two messages for diflerent problems are
merged into one message.

Assumption 2 At any time, any node can began to
solve any problem. Algorithm A terminates its execu-
tion after broadcasting that problem solving is finished.

1

Assumption 1 is common in networking. For exam-
ple, an IP datagram in TCP/IP protocols has a field

that carries protocol information [3]. Assumption 2
is also common in some cases. For example, in the
BGP protocol a node begins sending routing informa-
tion when it detects a change in adjacent edges. This
change might happen at any time, so a node can begin
execution at any time. Some algorithms send a ‘termi-
nate’ message to all nodes when they finish execution
(for example, election algorithms [SI). The overhead
for broadcasting termination is at most O(IEI) and
that is not very large in many cases. Thus, the above
assumptions hold for many distributed systems.

Assumption 3 Every message has a field ‘start’. I f
node vi begins solving p spontaneously, U, sets the
‘start’field to true for every message until it receives
a message to solve p from another node. vi sets the
‘start’field to false for the other messages.

This assumption does not increase the message size by
much (one bit is sufficient).

Definition 2 A function st : M --$ {true, false} is
defined as the content of the ‘start’field of the mes-
sage.

Definition 3 Let c = (u , v) be a unidirectional com-
munication link from U to U. It as one of the bidirec-
tional communication line represented by (u , v) E E.
In the following, a unidirectional communication link
is written as a lank. For a link c = (U , U), sr(c) means
its source node U and ds(c) means its destination node

Communication sequence cs = { (c l , M I) , (cz, M z) ,
. . . , (c k , M k) } is a set of pairs of a link and a message
sequence that passes the link.

For a message sequence M and message m, m E M
i,ff m appears in M .

For two communication sequence cs = { (c l , M l) ,

. . . , (c k , ML)}, the concatenation cs . cs’ i s defined as

For two communication sequence cs and cs’, cs <
cs’ iff for all i(1 5 i 5 I C) , Mi is a subsequence of Mi’
or Mi = Mi.

ds(c i) = v (l 5 i 5 I C) , it is called an input sequence
for U and denoted as is,. If a cs satisfies s r (C i) =
v(1 5 i 5 I C) , it is called an output sequence for v and
denoted as os,.

V .

(cz, Mz) , . . * I (Ck, Mk)} and cs’ = {(Cl, Mi), (cz, Mi),

{(Cl, Ml . M i) , (c z , Mz * Mi), . . . , (Ck, Mk * ML)}.

I f a cs = {(cl, M I) , (CZ, Mz), . . . , (ck , Mk)} satisfies

When an input sequence is, is sent to a node U , the
output sequence in response to is, depends on 21’s in-

ternal state and the arrival order of messages from dif-
ferent links because of the communication delay. It is
impossible for the other nodes to know the message ar-
rival order or the internal state of a node. Thus, even
if v executes A and A is deterministic, the other nodes
cannot predict the output sequence from v uniquely.
The output from v can therefore be expected to be a
set of communication sequences, which are defined as
a possible output sequence below. When a commu-
nication sequence is observed in response to an input
sequence, the nodes might send additional messages
to test node U. The additional test messages are de-
fined as a function from a set of U’S possible output
sequence to a set of U’S input sequence. This function
is defined as an input sequence function below.

When detecting a truant failure, the nodes must
not decide the next input sequence after they receive
all output messages. Consider the case where cs1 and
cs2 are included in the possible output sequence and
cs1 4 csz. If the nodes are waiting for csz and cs1
actually appears, the nodes wait forever. Thus, we
define an output sequence as a subset of a possible
output sequence.

Definition 4 The set of the communication se-
quences that may occur in response to input sequence
is, when v is executing A is called a possikle out-
put sequence set for is, and denoted as OS(is,).
The output sequence in response to input sequence
is,. is defined as {cs E OS(is,)I there is no cs’ E
OS(is,) such that cs’ < C S } and denoted as
OS(&).

A n input sequence function IS, is a function from
the set of U ’ S output sequences to the set of U ’ S input
sequences.

A n input sequence function from OS(is,) to a set of
input sequences (next input to U) is denoted as IS:’).

The possible output sequence set in response to is, .
is$’) is denoted as OS:’ and the output sequence is
denoted as OS;’). IS?), OS?)(; = 3,4, . . .) is defined
similarly. Also, let IS:’) = is,, OS$1) = OS(is,). W

Next, for a set of messages, let us define the set of
problems for which the messages are used.

Definition 5 For a set of communication sequence
CS, let P(CS) = {p(m)lm E M for some (c , M) E
CS}.

Lastly, the causal relation between events is defined.

Definition 6 [9]

300

e When an node executes event b after a, a + b.

For a message m, i f i ts send event is s(m) and
its receive event is r(m), s(m) + r(m).

When a + b and b + c, a + c.

Using the above definitions, a condition for detecting
truant failure is set forth the following theorem.

Theorem 2 A suficaent condition f o r the nodes V -
{ v } to be able to decide whether F,(p) = t rue is that
G - { v } is connected, each node knows its neighbor-
ing node, and there are an input sequence IS?) and
a sequence of input sequence functions IS$’), . . IS$^)
that satisfy the following:

e F O ~ any message m E I S ~ O) , p(m) = p.

For any p’ E P(IS$’), IS:’), . . .,IS:”) and for
all vi E V (includes v) , Fj(p’) = t rue and that
fact is known to all nodes.

Let Ode) = {CSI, C S ~ , . . . , cs,} and OS$k) =

For any pair of csi and c s i (1 5 i 5 a , 1 5 j I b),
there is a tuple (cij,mjj,mi,) that satisfies the
following:

{ cs; , cs;, . . . , .si}.

- mij E M for (c i j , M) E cs i .
- m:, E M’ for (C i j , M’) E cs;.

- For any pair (c , , m,) that satisfies m, E M,
f o r (c,, M,) E IS’?) and r(m,) + S(mjj),

there as a message m; which satisfies mk E
M;I. for (c,,M;I.) E IS$1) and r(m6) +

S(mij).

Theorem 2 can be proved by a decision algorithm DA.
D A is outlined as follows.

The nodes send messages of problem p to node v
first. Next, the nodes send messages of problem p’
that satisfies F,(p’) = t rue to node v on the links
p’s messages are sent. If a node receives problem p’s
message from v , the nodes can decide that F,(p) =
t rue . On the other hand, if the nodes receive the
messages of p’ from v without receiving messages of
p, the nodes can decide that F,(p) = f a l s e since the
communication is FIFO. The messages of p’ wipe out
the messages of p on the links. That is, D A executes
a channel flushing [l] .

This algorithm can be considered a generalization
of the ICMP echo (ping) protocol of the TCP/IP pro-
tocol suite [3]. In the ICMP echo protocol, when an

301

alive node v receives an ICMP echo request from node
w , v must send an ICMP echo reply message to w .
Consider in the algorithm A to solve a problem p, ‘U

must send a reply when w sends a message to U. When
w sends a message on the problem p and gets no reply
from v , w sends an ICMP echo request. When w re-
ceives the reply message, it can decide that v is alive,
v is reachable from w , and thus v does not process the
message on problem p.

There may be other types of problems in which v
must communicate to other nodes before replying to
w . For these types of problems, w cannot test whether
v processes correctly by ICMP echo, since ICMP echo
cannot test the activeness and reachability of the other
nodes with which v is communicating. Thus it is im-
possible for w to distinguish the two cases when v
does not process w’s request or v does so correctly
and the message communication delay between v and
other nodes is large. The theorem above gives a suffi-
cient condition that w can test v’s correctness for such
types of problems.

(Proof of Theorem 2) The steps in the DA are
as follows.

1. (Initiation) A node w that initiates the test of v
sends (“ I N I T ” , v,p, IS$1), IS?), . . . , I d k ’) to all
neighboring nodes but v .

2. (Initiation forwarding) Using the leader election
algorithm [7] outlined below on the network G -
{ v } , V - { v } selects one node as the leader (the
actual leader election algorithm is more complex
in order to minimize message transmission).

Each node is a candidate in the initial state.
It sends a “query” message with its identifier
to its neighbors.

e When a candidate receives a “query” mes-
sage with an identifier larger than its own
identifier, it enters a lost state and replies
a “lost” message to the sender. After that,
lost nodes just forward incoming messages.

0 If a candidate receives “lost” from all nodes
it has sent “query” to, it sends “query” again
to the other candidate nodes.

e Lastly, one candidate receives only “query”
messages of its own and it is the leader.

During election, the message (“INIT”, U , p,
IS:’), IS:’), . . . , IS$k’) is piggybacked on the
election messages and broadcasted to V - { v } .
Note that the rule for sending “lost” message is
modified as will be shown later.

3.

4.

5 .

6.

7.

8 .

9.

(Stopping normal execution) When a node r e
ceives “INIT“, it stops the initialization for solv-
ing P(I&), IS:,”), . . . , Idk)) U { p } . When some
of these problems are being solved, the execution
continues as usual.

(Execution of election) When a node receives
“query” and it must reply “lost”, the reply is
deferred until the time the execution of solving
problems in P(Is(,’), ISL2), . . . , IS$”) U { p } are
terminated. No deadlock results from this waiting
since the termination of execution of a problem is
broadcasted to the nodes (from the assumption).
Let w be the elected node.

(Sending messages of p) Let IS:’) = (cl,Ml),
(c2, M2), . . . , (cn,Mn). Node sr(cj) sends Mi to
v (i = 1 , . . . , ?a).

(Sending messages of p’) Let Is’,’) = (cf), Mi’)) ,
(cp), Mi’)) , . . . , (&‘I, M p)) . Node sr(c!’)) sends
Mi(’) to v (i = 1 , . . . , ?I).

(Output message collection and detection) Exe-
cute the following procedure for j = 2 , 3 , . . . , k-1.

0 If a node adjacent to v receives a message
m that satisfies p(m) = p , it broadcasts the
information F,(p) = true and terminates.
Otherwise, it forwards all messages received
from v (except for the ones with bg(m) =
true) to w .

0 w collects the messages forwarded by U’S

neighbors, obtains OS:’-’), and calculates
IS(OS$’-’)). IS(OS?-”> is sent to v’s
neighbors.

0 Let IS(OS?-’)) = (cf), MY)) , (cy) , M , L ~)) ,
. . . , (c?), Mi”). Node sr(cp)) sends M y)

If a node adjacent to v receives a message m that
satisfies p(m) = p , it broadcasts the information
F,(p) = true and terminates. Otherwise, it for-
wards all received messages from v (except for the
ones with bg(m) = true) to w .

If w receives all the messages in cs E OS:k), w
broadcasts the information F,(p) = false and
terminates. (end of algorithm)

to v (i = 1 , . . .,?I).

The validity of the algorithm is shown below.
(Case 1: F,(p) = true)
Since Is(,’) is the set of problem p’s messages, v

begins to solve p by receiving messages in Is(,’), or v

might begin to solve p spontaneously before receiving
the messages. For the latter case, a neighboring node
receives a message m that satisfies p(m) = p .

For the former case, assume that v sends a com-
munication sequence csi E OS:’) in response to IS$’).
In that case, false detection of F,(p) = false by re-
ceiving a communication sequence cs; E o ~ $ ~) cannot
occur. The reason is as follows. From the condition
set forth in Theorem 2, there is a pair of messages mij
(included in CS~) and mij (included in csi) received
from the same link cij that satisfies the following. For
any input message m, in Id’) sent via c, that satis-
fies r(m=) --f s(mij), there is a message m: in I&)
sent via c, which satisfies r(m6) 4 s (mi j) (that is,
for any measage m, that has a causality to mij , there
is an input message that has a causality to m:, and
passes the same link as that of m,). Assume that mij
is received. In that case, a message that has a causal-
ity to mij , m;, must have been received by U . On the
other hand, since the communication lines are FIFO,
problem p’s message m, that has sent the same line as
the one for m6, must have been received by v before
receiving m:. Since F,(p) = true, v processed these
messages correctly and sent mij. Since communica-
tion lines are FIFO, mij must have sent and received
before mij . Therefore, false detection cannot occur.

(Case 2: F,(p) = false)
v correctly processes all messages in 1$)(1 < i <

k). Thus, a communication sequence cs E OS;’) is
sent to neighbors. Thus, the nodes can detect F,,(p) =
false.

(Example) Consider distributed the search prob-
lem [13] and the broadcast problem [12]. In the dis-
tributed search problem, a node is the initiator and it
gets information on all nodes in G by sending “search”
messages and receiving their reply messages. When a
non-initiator node receives a “search” message from
a communication line c, it sends a “search” message
to at least one communication line that is not c (the
reply for this “search” message will be sent back af-
terwards).

In the broadcast problem, a node is the initiator
and it sends information to all nodes. When a non-
initiator node receives a “broadcast” message for the
first time from communication line c, it sends “broad-
cast” messages to all communication lines but c.

Assume that the neighbor nodes of v are u1 , . . . , U,

and ci = (v,ui),c: = (ui,v) (i = 1,. . .,?a).

First, consider the case where F,(broadcast) =
true and deciding whether F,,(search) = true.
Using Theorem 2, let IS:’) = (ck, “search”),

302

k = 1, and IS:’) = (ck, “broadcast”). Since
OS$’) = {{(cl, “search”)}, {(cz, “search”)}, . . . ,
((~ ~ - 1 , “search”))} and OS$) = {(cl, “broadcast”),
(CZ, “broadcast“), . . . , (~ ~ - 1 , “broadcast”)}, these sat-
isfy the condition in Theorem 2. Therefore, to decide
whether F,(search) = true, after the search mes-
sage, a broadcast message is sent to U . If broad-
cast messages are received by all neighbors and no
search messages are received, the nodes can decide
that F,(search) =false.

Next, consider the case where F,,(search) =
true and deciding whether F,(broadcast) = true.
Using Theorem 2, let IS:’) = (ck, “broadcast”),
k = 1, and IS:’) = (dn, “search“). Since
OS?) = {(cl, “broadcast”), (CZ, “broadcast”), . . . ,
(cn-l, “broadcast”)} and OS:’) = {{(cl, “search”)},
{(cz, “search”)}, . . . , ((~ ~ - 1 , “search”)}}, these sat-
isfy the condition in Theorem 2. Therefore, to de-
cide whether F,,(broadcast) = true, after the broad-
cast message, send a search message to U . If a
search message is received by a neighbor before r e
ceiving a broadcast message, the nodes can decide that
F,(broadcast) = false.

The messages of the broadcast problem can be used
to detect the truant failure for the search problem.
The messages of the search problem can be used to
detect the truant failure for the broadcast problem.

4 Conclusion

This paper has presented a multi-policy distributed
system as a new model of autonomous decentralized
systems. We introduced a new type of failure on the
multi-policy distributed systems, truant failure, and
presented an algorithm for truant failure detection.

Algorithms for detecting other undesirable local
policies and for eliminating the effects of such policies
are subjects for further study.

Acknowledgments

The authors would like to thank Dr. Rikio Onai for
his encouragement and suggestions.

References

[l] Ahuja, M.: “An Implementation of F-channels,”
IEEE Trans. on Parallel and Distributed Systems,
Vol. 2, No. 6, pp. 658-667 (June 1993).

[2] Clark, D.: “Policy Routing in Internetworks,” In-
ternetworking: Research and Experience, Vol. 1,
pp. 35-52 (1990).

[3] Comer, D.:

[4] Cristian, F., Aghill, H., Strong, R., and Dolev,
D.: “Atomic Broadcast: From Simple Mes-
sage Diffusion to Byzantine Agreement,” FTCS
(1985).

“Internetworking with TCP/IP,”
Prenticehall (1988).

[5] Fisher, M. J., Lynch, N. A., and Paterson, M.
S.: “Impossibility of Distributed Consensus with
One Faulty Process,” J. of ACM, Vol. 32, No. 2,
pp. 374-382 (Apr. 1985).

[6] Fisher, M. J.: “The Consensus Problem in Un-
reliable Distributed Systems (A Brief Survey),”
Proc. Int. Foundation of Computation Theory
Conf. pp. 128-140 (Aug. 1983).

[7] Gallager, R. G., Humblet, P. A., and Spira, P. M.:
“A Distributed Algorithm for Minimum-Weight
Spanning Trees,” ACM TOPLAS, Vol. 5, No. 1,
pp. 66-77 (Jan. 1983).

[8] Garcia-Molina, H.: “Elections in distributed
computing systems,” IEEE Transactions on Com-
puters C-31, 1, pp. 48-59(Jan. 1982).

[9] Lamport, L.: “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM,
Vol. 21, NO. 7, pp. 558-565 (July 1978).

[lo] Lougheed, K. and Rekhter, Y.: “A Border Gate-
way Protocol 3 (BGP-3),” RFC 1267 (Oct. 1991).

[ll] Lynch, D. C. and Rose, M. T.: “Internet System
Handbook,” Addison-Wesley (1993).

[12] Segall, A.: “Distributed Network Protocols,”
IEEE Trans. on Information Theory, Vol. 29, No.
1 (Jan. 1983).

[13] Sharma, M. B., Iyengar, S. S., and Mandyam, N.
K.: “An Eficient Distributed Depth-first-search
Algorithm,” Information Processing Letters, Vol.
32, No. 4, pp. 183-186 (Sep. 1989).

[14] Tel, G.: “Topics in Distributed Algorithms,”
Cambridge University Press (1991).

