
70 Int. J. of Applied Cryptography, Vol. 1, No. 1, 2008

An optimistic fair exchange protocol and its
security in the universal composability framework

Yusuke Okada*
Department of Social Informatics,
Graduate School of Informatics,
Kyoto University,
Kyoto, Japan
E-mail: yokada@ai.soc.i.kyoto-u.ac.jp
*Corresponding author

Yoshifumi Manabe
NTT Communication Science Laboratories,
Nippon Telegraph and Telephone Corporation,
Department of Social Informatics,
Graduate School of Informatics,
Kyoto University,
Kyto, Japan
E-mail: manabe.yoshifumi@lab.ntt.co.jp

Tatsuaki Okamoto
NTT Information Sharing Platform Laboratories,
Nippon Telegraph and Telephone Corporation,
Department of Social Informatics,
Graduate School of Informatics,
Kyoto University,
Kyto, Japan
E-mail: okamoto.tatsuaki@lab.ntt.co.jp

Abstract: Fair exchange protocols allow both or neither of two parties to obtain the other’s items,
and this property is essential in e-commerce. In this paper, we construct an optimistic fair exchange
protocol that is applicable to any digital signature by prescribing three forms of signatures, namely
presignature, post-signature and notarised signature. We set an expiration date for presignature,
and thus realise the timely termination of the protocol. Next, we define an ideal functionality of fair
exchange protocols in the universal composability framework. Then, we construct an optimistic fair
exchange protocol based on the above protocol, and prove its security in the universal composability
framework.

Keywords: optimistic fair exchange protocols; digital signature; trusted third party; TTP; universal
composition.

Reference to this paper should be made as follows: Okada, Y., Manabe, Y. and Okamoto T. (2008)
‘An optimistic fair exchange protocol and its security in the universal composability framework’,
Int. J. of Applied Cryptography, Vol. 1, No. 1, pp.70–77.

Biographical notes:Yusuke Okada received an ME from Kyoto University, Kyoto, Japan, in 2007.
His research interests are cryptography and information security. His current affiliation is KDDI
Corporation, Japan.

Yoshifumi Manabe received BE, ME and Dr.E. from Osaka University, Osaka, Japan, in 1983, 1985
and 1993, respectively. In 1985, he joined NipponTelegraph andTelephone Corporation. Currently,
he is a Senior Research Scientist, Supervisor of NTT Communication Science Laboratories. His
research interests include distributed algorithms and cryptography. He has been a Guest Associate
Professor at Kyoto University since 2001.

Tatsuaki Okamoto received BE, ME and Dr.E. from the University of Tokyo, Tokyo, Japan, in 1976,
1978 and 1988, respectively. He is a Fellow of NTT Information Sharing Platform Laboratories.
He is presently engaged in research on cryptography and information security. He is the Director
of the Japan Society for Industrial and Applied Mathematics and a Guest Professor at Kyoto
University.

Copyright © 2008 Inderscience Enterprises Ltd.

An optimistic fair exchange protocol and its security in the universal composability framework 71

1 Introduction

Fair exchange is an essential property in e-commerce,
and various protocols have been proposed for realising
fair exchange including gradual secret exchange (Even
et al., 1985; Okamoto and Ohta, 1994), non-repudiation
(Zhou and Gollmann, 1996, 1997) and optimistic fair
exchange. Optimistic fair exchange protocols allow both or
neither of two involved parties to obtain the other’s items,
where a Trusted Third Party (TTP) is not invoked when
the two involved parties perform the protocol correctly.
This kind of protocol is more practical than those in which
TTP mediates all transactions. Many approaches have been
employed to realise this kind of protocol (Asokan et al.,
2000; Ateniese, 1999; Bao et al., 1998; Dodis and Reyzin,
2003; Park et al., 2003). Optimistic fair exchange protocols
can be categorised by the data to be exchanged such as the
exchange of digital signatures on two different messages,
the exchange of digital signatures on the same message, and
the exchange of a digital signature and digital data. Here
we consider protocols that exchange a digital signature and
digital data.

In this paper, we construct an optimistic fair exchange
protocol that is applicable to any digital signature scheme
such as RSA or DSA by prescribing the form of signatures,
and prove the security of optimistic fair exchange protocols in
the universal composability framework, which was proposed
by Canetti (2001). This framework provides a unified
methodology for proving the security of various protocols.
Furthermore, in the universal composability framework, it
is guaranteed that a secure primitive maintains its security
even if other primitives run concurrently. Since optimistic
fair exchange protocols use many primitives such as digital
signatures, secure channels and certificate authorities, this
property is very helpful. Our optimistic fair exchange
protocol can employ any secure digital signature, so it is easy
to handle within the universal composability framework by
using the hybrid protocol.

2 Preliminaries

2.1 Optimistic fair exchange protocols

Asokan et al. (2000) proposed an optimistic fair exchange
protocol that uses verifiable escrow. To use TTP as an
escrow service, a signer encrypts his/her signature under
the public key of TTP. Verifiable escrow is an encryption
scheme with an attached decryption policy that represents
the conditions under which the encryption will be decrypted
by TTP. First, the signer reduces his/her signature to a
certain homomorphic preimage of the signature. The signer
then verifiably escrows the homomorphic preimage using a
cut-and-choose interactive zero-knowledge proof. This
scheme is applicable to any signature as long as the signature
scheme can be reduced to a certain homomorphic preimage of
the signature. They introduced homomorphic presignatures
for RSA, DSA, Schnorr, Fiat-Shamir signatures among
others. The drawback of this protocol is that it is highly
interactive and needs a large amount of computation.

Bao et al. (1998) proposed a fair exchange protocol with
off-line TTP that uses Certificate of Encrypted Message

Being a Signature (CEMBS). In this protocol, parties
sign their messages (such as a contract) and encrypt
their signatures. CEMBS is used to convince parties
that an encrypted signature is a certain party’s signature
on a message without revealing the signature itself. To
realise this property, CEMBS uses proof-of-knowledge
techniques and has to utilise the combination of a particular
public key cryptosystem and a digital signature scheme
((Bao et al., 1998) used ElGamal and DSA or ElGamal
and Gullou-Quisquater). This ad hoc technique is not a
desirable property. Boneh et al. (2003) recently proposed a
new verifiably encrypted signature scheme based on the GDH
signature of Boneh et al. (2001). This scheme is completely
non-interactive.

Park et al. (2003) introduced an optimistic fair exchange
protocol that uses the two-party multisignature scheme
as a primitive element. We use the term two-signature to
represent a two-party multisignature quoting from
Dodis and Reyzin (2003). Park et al. (2003) composed a
two-signature scheme based on RSA signature, but Dodis
and Reyzin (2003) broke this scheme. Recently, Boldyreva
(2003) proposed a non-interactive multisignature scheme
based on the GDH signature of Boneh et al. (2001). Dodis
and Reyzin (2003) introduced an optimistic fair exchange
protocol by utilising the non-interactive multisignature of
Boldyreva. The protocol of Dodis and Reyzin (2003) has
two drawbacks. First, TTP has to safely store as many secret
arbitration keys as the number of users. Next, it requires
special elliptic curve groups with a bilinear map and a
two-signature scheme.

2.2 Universal composability framework

The universal composability framework, proposed by
Canetti (2001), is a general framework for analysing
the security of cryptographic protocols. In this framework,
the security of protocols is defined by comparing the
executions of two protocols, a real process and an ideal
process.

In the real process, a multiparty protocol is executed
in a given environment in the presence of an adversary
that controls the communication between the parties and
can corrupt the parties. In the ideal process, there is an
ideal functionality that captures the desired functionality for
carrying out the task and performs as a subroutine of multiple
parties. Parties in the ideal protocol, called dummy parties,
forward input from the environment to the ideal functionality
and send back reply directly.

The environment, which represents all the other
protocols running in the system, passes input to and obtains
output from the parties and the adversary, and finally outputs
a single bit attempt to distinguish with which protocol
is interacting. A protocol π is said to UC-realise an ideal
functionality F if for any adversary A there is an ideal process
adversary S (we often call the adversary S a simulator)
such that no environment Z can tell whether it is interacting
with π and A or with IDEALF , which is the ideal protocol
for F and S.

We use the following notation defined in Canetti (2001).
Let EXECπ,A,Z(k, z) represent Z’s output after it has
interacted with π and A, given the security parameter

72 Y. Okada, Y. Manabe and T. Okamoto

k and input z. Let EXECπ,A,Z represent the ensemble
{EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

3 Fair exchange functionality

First, we define the ideal functionality of fair exchange
protocols. Fair exchange is a task where two parties interact
such that either party obtains the other’s item or neither
does. In other words, no dishonest party can obtain the
honest party’s item without the honest party obtaining the
dishonest party’s item. The fair exchange functionality,
F (propA, propB, verify)

FE is shown in Figure 1. Here, we consider
the case where parties A and B exchange a digital signature
on MA for digital data MB .

Two functions propA : {0, 1}∗ → {0, 1} and propB :
{0, 1}∗ → {0, 1} capture the verification of MA and MB ,
respectively. The function verify(·) captures the signature
verification function. Since this function may depend on the
composition of the protocol, we will describe the definition
of verify(·) in Section 4.3.

The functionality shown in Figure 1 captures the fair
exchange task, not just the optimistic task. Party T (this
party, representing TTP, appears in the real protocol) does not
appear explicitly in the ideal protocol for this functionality.
Instead, the functionality itself plays the role of TTP. This
difference between the ideal and real protocol poses no
problem because there is no input or subroutine output from
Z to T and back in either protocol.

4 Optimistic fair exchange protocol

Here we describe an optimistic fair exchange protocol that
is applicable to any digital signature scheme such as RSA
or DSA by prescribing the form of signatures. The parties
involved in the protocol areAlice (customer), Bob (merchant)
and TTP. In this paper, we consider exchange protocols
where two involved parties exchange a digital signature for
digital data. For example, Alice purchases digital data (e.g.
music files, license keys) from Bob in exchange for her
digital signature on the purchase contract. We do not consider
digital data that allows Alice to obtain a benefit if she obtains
multiple copies of the same digital data. This assumption is
required when the dispute resolution protocol is invoked.

4.1 Definition of presignature, post-signature,
and notarised signature

First, we define three types of signatures, presignature,
post-signature and notarised signature, by prescribing
the form of the signatures. We assume that the signature
scheme consists of the triple of algorithm (KeyGen, Sign,
Verify). We also assume that Alice and TTP have already
generated their secret and public key pairs by executing
KeyGen in the setup phase, and used PKI to certify their
public keys. Presignature, post-signature and notarised
signature are defined as follows.

Presignature: Alice’s presignature is of the form

σpre = SignA(MA, certA, certTTP, t)

Post-signature: Alice’s post-signature is of the form

σpost = SignA(MA, certA)

Notarised signature: the notarised signature by TTP is of
the form

σTTP = SignTTP(σpre)

The term MA represents the purchase contract. certA
and certTTP indicate the certificates of Alice and TTP,
respectively, and parameter t is the expiration date of the
presignature. We introduce this parameter to realise the
timely termination of the protocol. The presignature is
Alice’s signature on the concatenation of the purchase
contract, Alice’s public key certificate, TTP’s public key
certificate and the parameter that represents the expiration
date of the presignature. The post-signature is Alice’s
signature on the concatenation of the purchase contract and
Alice’s public key certificate. The notarised signature is
TTP’s signature on Alice’s presignature. We define both
the post-signature and notarised signature as legally valid
signatures. In addition, even if Bob shows both σpre and σTTP,
these are regarded as one legally valid signature. On the other
hand, the presignature is defined as a legally invalid signature.
TTP has the power to transform Alice’s presignature into
a notarised signature that has the same legal value as a
post-signature.

Figure 1 The fair exchange functionality, F (propA, propB , verify)

FE

Functionality F (propA, propB , verify)

FE

1. Upon receiving input (Initiate, sid, MA) from party A, verify that sid = (A, B, sid′) for some party B and
propA(MA) = 1. If not, ignore this input. Else, send (Initiate, sid, MA) to the adversary. Upon receiving ok from the
adversary, record the entry (A, B, MA) and send output (Initiated, sid) to B.

2. Upon receiving input (Send, sid, MB) from B, verify that there is an entry (A, B, MA) and propB(MB) = 1. If not,
ignore this input. Else, send (Sent, sid, |MB |) to the adversary. Upon receiving (Signature, sid, MA, σA) from the
adversary, check whether verify(MA, σA) = 1. If not, ignore the input. Else, record the entries (A, B, MA, σA) and
(B, A, MB) and send output (Sent, sid, MB) to A.

3. Upon receiving (Get, sid) from B, verify that there exist two entries (A, B, MA, σA) and (B, A, MB). If not, ignore this
input. Else, send (Get, sid) to the adversary. Upon receiving ok from the adversary, and send output (Sent, sid, MA, σA)

to B.

An optimistic fair exchange protocol and its security in the universal composability framework 73

4.2 Description of optimistic fair
exchange protocol

We now construct an optimistic fair exchange protocol by
using these signatures. It consists of two protocols, the main
protocol and a dispute resolution protocol. In the protocols,
we assume that data transactions are executed over secure
channels established using techniques such as SSL. Alice
initiates the main protocol with Bob. The main protocol is as
described below.

Main protocol:

1 Alice sends her presignature to Bob.

2 Bob verifies the presignature and its expiration date. If
either one is invalid, Bob aborts the protocol. Else, Bob
sends his digital data to Alice.

3 Alice verifies the digital data. If it is invalid, she aborts
the protocol. Else, Alice sends her post-signature to Bob.

4 Bob verifies the post-signature. If it is invalid or Bob
does not receive it by the expiration date of Alice’s
presignature, then Bob invokes the dispute resolution
protocol. Else, the exchange protocol ends correctly.

Then, we describe the dispute resolution protocol. Bob
initiates the protocol with TTP.

Dispute resolution protocol:

1 Bob sends Alice’s presignature to TTP along with his
digital data.

2 TTP verifies the presignature, its expiration date, and the
digital data. If any one of them is invalid, TTP aborts the
protocol. Else, TTP sends the notarized signature to Bob.

3 TTP also forwards Bob’s digital data to Alice.

Bob has to send his digital data in Step 1 of the dispute
resolution protocol and TTP forwards Bob’s digital data to
Alice in Step 3 is to prevent malicious Bob from obtaining the
notarised signature without sending his digital data to Alice.
In the dispute resolution protocol, the TTP’s verification of
the digital data may constitute a bottleneck, because it is
difficult to associate the verification of digital data with a
certain mathematical algorithm. To verify the digital data
efficiently in practice, we propose the use of hash tables. We
assume that there is a hash table of digital data such as music
files and online software. TTP generates a message digest hB

of digital data MB by using hash functions, and verifies MB

by checking whether or not hB is in the hash table.
Expiration date of presignatures: parameter t defines

the expiration date of Alice’s presignature. This parameter
may be set by Alice or set as a system parameter. Bob
rejects expired presignatures in the main protocol, and TTP
will not transform presignatures into notarised signatures
after the expiration date. This parameter realises the timely
termination of the exchange protocol because both Alice and
Bob will be at a disadvantage if they do not terminate the
protocol by the expiration date.

Disadvantage for Alice: if Alice sets an unfavourable t

(e.g. too short or past date), Bob will not send MB . Thus,
Alice cannot obtain any advantage from this.

Disadvantage for Bob: if Bob sends his digital data
after the expiration date of Alice’s presignature and Alice
does not send her postsignature, Bob cannot obtain Alice’s
valid signature by using the dispute resolution protocol
because TTP does not transform presignatures after the
expiration date. Thus, parameter t constrains Bob to
send MB by the expiration date. If Bob sends MB and Alice
does not send her post-signature until the expiration date,
Bob invokes the dispute resolution protocol and has Alice’s
presignature transformed into a notarised signature by the
expiration date.

For practical purposes, we should prearrange when
Bob invokes the dispute resolution protocol in cases where
Alice does not send her post-signature. That is, for example,
Bob will be able to have presignatures transformed into
notarised signatures between the expiration date and the
following day. After waiting for Alice’s post-signature until
the expiration date, Bob invokes the dispute resolution
protocol during this period and obtains the notarised
signature.

4.3 Protocol πOFE in the (FSIG, FREG, FSCS)-hybrid
model

Next, we construct a hybrid protocol based on the protocol
mentioned above, slightly modifying it to make it easier to
handle within the universal composability framework. Here,
we present a hybrid protocol for realising F (propA, propB, verify)

FE ,
given the ideal functionalities FSIG, FREG, and FSCS. The
protocol πOFE is shown in Figure 2. The underlined parts
in the figure represent parties’ outputs to the environment
Z . Party T represents a TTP, which is guaranteed not to be
corrupted by the adversary.

We use the term mpre as the concatenation of (MA, A, T)

and mpost as the concatenation of (MA, A), where A

and T represent the respective IDs. Presignature σpre and
post-signature σpost represent A’s signature on mpre and
mpost, respectively. Notarised signature σTTP represents T ’s
signature on σpre. σpost and σTTP are defined as legally valid
signatures, so Bob expects to receive either σpost or σTTP.

Thus, in protocol πOFE, verify(·) in F (propA, propB, verify)

FE is
defined as the function that returns 1 iff vA(mpost, σpost) =
1 ∨ (vA(mpre, σpre) = 1 ∧ vTTP(σpre, σTTP) = 1).

In Figure 2, Step 2(e) corresponds to the resolution
protocol. When neither A nor B is corrupted, party A

correctly outputs (Sent, sid, MB) in Step 2(d) and goes to
Step 3, because all messages between A and B are sent
and received by using FSCS. There are two cases in which
the resolution protocol is executed. One is where party A is
corrupted by the adversary and instructed to send an invalid
σ ′

post. The other is where party B is corrupted and instructed
to send an invalid M ′

B . In this case, A enters the waiting state
and goes to Step 2(e). The adversary can instruct corrupted
B to send a resolve message to T .

This hybrid protocol uses three ideal functionalities: FSIG,
FREG and FSCS. We show the ideal functionalities FSIG,
FREG and FSCS defined by Canetti (2001) in Figures 3–5,
respectively. We slightly modify FREG from the original one
in Canetti (2001). The modified registration functionality
sends output (Registered, sid, v) to the party in order to
specify clearly the activation of the key registering party.

74 Y. Okada, Y. Manabe and T. Okamoto

Figure 2 Protocol πOFE in the (FSIG, FREG, FSCS)-hybrid model

Protocol πOFE in the (FSIG, FREG, FSCS)-hybrid model

1. When activated with input (Initiate, sid, MA), do:

(a) A verifies that sid = (A, B, sid′) for some party B. If not, ignore the input. Else, it sends the message
(KeyGen, sidA) to FSIG where sidA = (A, sid), and obtains (Verification Algorithm, sidA, vA). Next, A sends
(Register, sidA, vA) to FREG, and obtains (Registered, sidA, vA).

(b) A sends the message (Sign, sidA, mpre) to FSIG where mpre = (MA, A, T) and obtains
(Signature, sidA, mpre, σpre). A then sends (mpre, σpre) to B by using FSCS.

(c) Upon receiving (mpre, σpre), B verifies that propA(MA) = 1. If not, B halts. Else, B sends (Retrieve, sidA) to
FREG, and obtains (Retrieve, sidA, vA) from FREG.

(d) B sends (Verify, sidA, mpre, σpre, vA) to FSIG, and obtains (Verified, sidA, mpre, vA(mpre, σpre)). If vA(mpre, σpre) =
1, B outputs (Initiated, sid). Else, B halts.

2. When activated with input (Send, sid, MB), do:

(a) If vA(mpre, σpre) = 1, B sends MB to A by using FSCS. Else, it halts.

(b) Upon receiving MB , A verifies that propB(MB) = 1. If not, go to step(e). Else, A sends the message
(Sign, sidA, mpost) to FSIG where mpost = (MA, A), and obtains (Signature, sidA, mpost, σpost) from FSIG.

(c) A sends (mpost, σpost) to B by using FSCS.

(d) Upon receiving (mpost, σpost), B sends (Verify, sidA, mpost, σpost, vA) to FSIG, and obtains
(Verified, sidA, mpost, vA(mpost, σpost)). If vA(mpost, σpost) �= 1, go to step(e). Else, B sends (Verified, sid)

to A by using FSCS, and A outputs (Sent, sid, MB).

(e) B sends (Resolve, sid, (mpre, σpre), MB) to T by using FSCS,

(i.) Upon receiving (Resolve, sid, (mpre, σpre), MB), T sends (Retrieve, sidA) to FREG, and obtains
(Retrieve, sidA, vA). It then sends (Verify, sidA, mpre, σpre, vA) to FSIG.

(ii.) Upon receiving (Verified, sidA, mpre, vA(mpre, σpre)) from FSIG, T verifies that vA(mpre, σpre) = 1 and
propB(MB) = 1. If not, it halts. Else, it sends the message (KeyGensidT) to FSIG, where sidT = (T , sid),
and obtains (Verification Algorithm, sidT , vT). Next, it sends (Register, sidT , vT) to FREG, and obtains
(Registered, sidT , vT).

(iii.) T sends (Sign, sidT , σpre) to FSIG, and obtains (Signature, sidT , σpre, σTTP).

(iv.) T sends MB to A by using FSCS.

(v.) Upon receiving MB , A outputs (Sent, sid, MB).

3. When activated with an input (Get, sid), do:

(a) If B has obtained (mpost, σpost) where vA(mpost, σpost) = 1, it outputs (Sent, sid, MA, σpost).

(b) Else, B sends (Get, sid) to T by using FSCS. Upon receiving (Get, sid), T sends σTTP to B by using FSCS. Upon
receiving σTTP, B outputs (Sent, sid, MA, (σpre, σTTP)).

5 Security of protocol πOFE

Theorem 1: Protocol πOFE UC-realises fair exchange
functionalityF (propA, propB, verify)

FE in the (FSIG, FREG, FSCS)-
hybrid model.

Proof: Let SHYB be a hybrid protocol simulator that
interacts with parties running πOFE in the (FSIG, FREG,

FSCS)-hybrid model. We now construct a simulator S
such that the view of the environment Z when interacting
with SHYB and πOFE has the same distribution as Z when
interacting with S and the ideal protocol for FFE. That is,
for any SHYB there exists S such that EXECπOFE,SHYB,Z ≈

EXECIDEALF ,S,Z for any environment Z . S runs an
internal copy of SHYB as a black box, forwards any
input from Z to SHYB and vice versa. S also runs
an internal copy of each of the involved parties, and simulates
FSIG, FREG and FSCS. The behaviour of S is described
as follows.

A case where no party is corrupted. When S receives
(Initiate, sid, MA) from FFE, where sid = (A, B, sid′), it
proceeds as follows:

1 S simulates the processes of key generation and
registration. It sends the message (KeyGen, sidA) to
SHYB (in the name of FSIG), and obtains
(Verification Algorithm, sidA, sA, vA).

An optimistic fair exchange protocol and its security in the universal composability framework 75

Figure 3 The signature functionality, FSIG

Functionality FSIG

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that sid = (S, sid′) for some sid′. If
not, then ignore the request. Else, hand (KeyGen, sid) to the adversary. Upon receiving (Algorithms, sid, s, v) from
the adversary, where s is a description of a PPT ITM, and v is a description of a deterministic polytime ITM, output
(Verification Algorithm, sid, v) to S.

Signature generation: Upon receiving a value (Sign, sid, m) from S, let σ = s(m), and verify that v(m, σ) = 1. If so,
then output (Signature, sid, m, σ) to S and record the entry (m, σ). Else, output an error message to S and halt.

Signature Verification: Upon receiving a value (Verify, sid, m, σ, v′) from some party V , do: If v′ = v, the signer is not
corrupted, v(m, σ) = 1, and no entry (m, σ ′) for any σ ′ is recorded, then output an error message to S and halt. Else,
output (Verified, sid, m, v′(m, σ)) to V .

Figure 4 The registration functionality, FREG

Functionality FREG

1. Upon receiving input (Register, sid, v), verify that sid = (P, sid′). If sid′ is not of that form, or this is not the first
input from P , then ignore this input. Else, send (Registered, sid, v) to the adversary and record the value v. Then,
send (Registered, sid, v) to P .

2. Upon receiving input (Retrieve, sid) from party P ′, send a delayed output (Retrieve, sid, v) to P ′. (If no value v is
recorded, then set v =⊥.)

Figure 5 The secure communication session functionality, FSCS

Functionality FSCS

FSCS proceeds as follows, when parameterised by the leakage function l : {0, 1}∗ → {0, 1}∗.

1. Upon receiving input (Establish-Session, sid) from party I , verify that sid = (I, R, sid′) for some R, record I as
active, record R as the responder, and send a public delayed output (Establish-Session, sid) to R.

2. Upon receiving (Establish-Session, sid) from party R, verify that R is recorded as the responder, and record R as
active.

3. Upon receiving input (Send, sid, m) from party P ∈ {I, R}, send (Sent, sid, P , l(m)) to the adversary. In addition, if
P is active then send a private delayed output (Sent, sid, P , m) to the other party in {I, R}.

It then sends (Verification Algorithm, sidA, vA) to
simulated A. Next, it sends (Registered, sidA, vA) to
SHYB and simulated A.

2 S simulates the processes of signature generation and the
sending of (mpre, σpre). It sends the message
(Establish-Session, sid) to SHYB (in the name of FSCS),
obtains ok from SHYB and sends
(Establish-Session, sid) to simulated B. Next, it sends
the message (Sent, sid, |(mpre, σpre)|) to SHYB. Upon
receiving ok from SHYB, it sends (Sent, sid, (mpre, σpre))

to simulated B.

3 S simulates the processes of key retrieval and signature
verification. It sends the message (Retrieve, sidA, vA) to
SHYB (in the name of FREG). Upon receiving ok from
SHYB, it sends (Retrieve, sidA, vA) to simulated B.
Then, S sends ok to FFE.

When S receives (Send, sid, |MB |) from FFE, it proceeds as
follows:

1 S simulates the process of sending MB . It sends the
message (Sent, sid, |MB |) to SHYB (in the name of
FSCS), and receives ok from SHYB.

2 S simulates the processes of the signature generation and
the sending of (mpost, σpost). It sends the message
(Sent, sid, |(mpost, σpost)|) to SHYB (in the name of
FSCS). Upon receiving ok from SHYB, it sends
(Sent, sid, (mpost, σpost)) to simulated B.

3 S simulates the process of sending the verification
message (Verified, sid). It sends the message
|(Verified, sid)| to SHYB (in the name of FSCS). Upon
receiving ok from SHYB, it sends
(Signature, sid, MA, σpost) to FFE.

When S receives (Get, sid) from FFE, S sends (Send, sid,

(mpost, σpost)) to FFE, since there is no party corruption.
In this case, S can perform the simulation perfectly.

That is, the view of the environment Z when interacting
with SHYB and πOFE has the same distribution as
that of Z when interacting with S and the ideal protocol
for FFE.

Next, we construct S assuming party corruption. Since all
messages are sent by using FSCS in πOFE, it is only necessary
to consider the case where SHYB instructs a corrupted party
to send modified data to FSCS. Cases where SHYB instructs a

76 Y. Okada, Y. Manabe and T. Okamoto

corrupted party to register a modified key to FREG or instructs
a corrupted party to sign a modified message by FSIG are
similar to the case described above.

Simulating party corruption: to simulate party corruption,
S has to simulate the current local state of the corrupted party.
S knows the secret keys of the parties, so it can clearly provide
simulated SHYB with the local state of the corrupted party
except for MB . When black box SHYB sends a corruption
message to party A, S (simulating corrupted A) must send
MB to SHYB after simulating B’s transmission of MB .

A case where party A is corrupted: when SHYB instructs
corrupted A to send (Send, sid, (m′

pre, σ
′
pre)) to FSCS, S

proceeds as follows:

1 S sends (Sent, sid, |(m′
pre, σ

′
pre)|) to SHYB in the name of

FSCS. Upon receiving ok from SHYB, S sends
(Sent, sid, (m′

pre, σ
′
pre)) to simulated B in the name of

FSCS.

2 Next, S simulates the process of signature verification.
S sends (Verified, sidA, m′

pre, vA(m′
pre, σ

′
pre)) to

simulated B in the name of FSIG. If vA(m′
pre, σ

′
pre) = 1,

S sends ok to FFE.

When SHYB instructs corrupted A to send (Send, sid,

(m′
post, σ

′
post)) to FSCS, simulated S proceeds as follows:

1 S sends (Sent, sid, |(m′
post, σ

′
post)|) to SHYB in the name

of FSCS. Upon receiving ok from SHYB, S sends
(Sent, sid, (m′

post, σ
′
post)) to simulated B in the name of

FSCS.

2 Next, S simulates the process of signature verification.
S sends (Verified, sidA, m′

post, vA(m′
post, σ

′
post)) to

simulated B in the name of FSIG. If vA(m′
post, σ

′
post) = 1,

S simulates in the same way as when the parties are not
corrupted.

3 Else, S simulates the process of the resolution phase.
S sends (Sent, sid, |((mpre, σpre), MB)|) to SHYB in the
name of FSCS. Upon receiving ok from SHYB, S sends
(Sent, sid, ((mpre, σpre), MB)) to simulated T .
Next, S simulates the processes of the signature
generation of T . S then sends (Sent, sid, |MB |) to SHYB.
Upon receiving ok from SHYB, S sends (Sent, sid, MB)

to corrupted A, and sends
(Signature, sid, MA, (σpre, σTTP)) to FFE.

4 Upon receiving (Get, sid) from FFE, S simulates the
process of B obtaining T ’s signature. S sends
(Sent, sid, |(Get, sid)|) to SHYB in the name of FSCS.
Upon receiving ok from SHYB, S sends
(Sent, sid, (Get, sid)) to T . Next, S sends
|(Signature, sidT , σpre, σTTP)| to SHYB. Upon receiving
ok from SHYB, S sends ok to FFE.

A case where party B is corrupted: when SHYB instructs
corrupted B to send (Send, sid, M ′

B) to FSCS, S proceeds
as follows:

1 S sends (Send, sid, |M ′
B |) to SHYB in the name of FSCS.

Upon receiving ok from SHYB, S sends (Send, sid, M ′
B)

to simulated A. If propB(M ′
B) = 1, S simulates in the

same way as when parties are not corrupted.

2 Else, if SHYB instructs corrupted B to send
(Resolve, sid, (mpre, σpre), MB) to FSCS, S simulates the
process of resolution phase. Simulated A finally receives
(Sent, sid, MB), and S then sends
(Signature, sid, MA, (σpre, σTTP)) to FFE.

3 When corrupted B sends (Get, sid) to FSCS, S simulates
the process of B obtaining T ’s signature. S finally sends
(Signature, sidT , σpre, σTTP) to simulated B, and sends
ok to FFE.

6 Conclusion

In this paper, we constructed an optimistic fair exchange
protocol that is applicable to any digital signature by
prescribing three forms of signatures, namely presignature,
post-signature and notarised signature. We set the expiration
date for the presignature, and thus realised the timely
termination of the protocol.

Next, we defined the fair exchange functionality
F (propA, propB, verify)

FE in the universal composability framework,
and constructed an optimistic fair exchange protocol
that UC-realises the fair exchange functionality in the
(FSIG, FREG, FSCS)-hybrid model by slightly modifying the
protocol mentioned above.

References

Asokan, N., Shoup, V. and Waidner, M. (2000) ‘Optimistic fair
exchange of digital signatures’, IEEE Journal on Selected Areas
in Communication, Vol. 18, No. 4, pp.593–610.

Ateniese, G. (1999) ‘Efficient verifiable encryption (and fair
exchange) of digital signatures’, Proceedings of the 6th
ACM Conference on Computer and Communications Security,
pp.138–146.

Bao, F., Deng, R. and Mao, W. (1998) ‘Efficient and practical fair
exchange protocols with off-line TTP’, Proceedings of the IEEE
Symposium on Security and Privacy, pp.77–85.

Boldyreva, A. (2003) ‘Efficient threshold signature, multisignature
and blind signature schemes based on the Gap-Diffie-Hellman-
group signature scheme’, Proceedings of Practice and Theory in
Public Key Cryptsystems - PKC 2003, Vol. 2567 of Lecture Notes
in Computer Science, pp.31–46.

Boneh, D., Gentry, C., Lynn, B. and Shacham, H. (2003)
‘Aggregate and verifiably encrypted signatures from bilinear
maps’, Advances in Cryptology - EUROCRYPT 2003, Vol. 2656
of Lecture Notes in Computer Science, pp.416–432.

Boneh, D., Lynn, B. and Shacham, H. (2001) ‘Short signatures
from weil pairing’, Advances in Cryptology - ASIACRYPT 2001,
Vol. 2248 of Lecture Notes in Computer Science, pp.514–532.

Canetti, R. (2001) ‘Universally composable security: a new
paradigm for cryptographic protocols’, Proceedings of the 42nd
Foundations of Computer Science Conference, pp.136–145, Full
version at http://eprint.iacr.org/2000/067/.

Canetti, R. (2004) ‘Universally composable signature, certification,
and authentication’, 17th Computer Security Foundations
Workshop, pp.219–235, Available at: http://eprint.iacr.org/2001.

Canetti, R. and Krawczyk, H. (2002) ‘Universally composable
notions of key exchange and secure channels’, Advances in
Cryptology - EUROCRYPT 2002, Vol. 2332 of Lecture Notes
in Computer Science, pp.337–351.

An optimistic fair exchange protocol and its security in the universal composability framework 77

Dodis, Y. and Reyzin, L. (2003) ‘Breaking and repairing optimistic
fair exchange from PODC 2003’, Proceedings of the 2003 ACM
Workshop on Digital Rights Management, pp.47–54.

Even, S., Goldreich, O. and Lempel, A. (1985) ‘A randomized
protocol for signing contracts’, Communications of the ACM,
Vol. 28, No. 6, pp.637–647.

Okamoto, T. and Ohta, K. (1994) ‘How to simultaneously
exchange secrets by general assumptions’, Proceedings of 2nd
ACM Conference on Computer and Communications Security,
pp.184–192.

Park, J.M., Chong, E. and Siegel, H.J. (2003) ‘Constructing
fair-exchange protocols for E-commerce via distributed
computation of RSA signatures’, Proceedings of the 22nd
Symposium on Principles of Distributed Computing, pp.172–181.

Zhou, J. and Gollmann, D. (1996) ‘A fair non-repudiation protocol’,
Proceedings of the 1996 IEEE Symposium on Security and
Privacy, pp.55–61.

Zhou, J. and Gollmann, D. (1997) ‘An efficient non-repudiation
protocol’, Proceedings of the 10th IEEE Computer Security
Foundations Workshop, pp.126–132.

