A three-player envy-free discrete division protocol for mixed manna

Yuki Okano¹ and Yoshifumi Manabe^{1[0000-0002-6312-257X]}

Faculty of Informatics, Kogakuin University Shinjuku, Tokyo Japan manabe@cc.kogakuin.ac.jp

Abstract. This paper proposes a three-player envy-free discrete assignment protocol of a divisible good, in which the utility of some portion of the good can be positive for some players and negative for the others. Such a good is called mixed manna. For mixed manna, current discrete envy-free cake-cutting or chore-division protocols cannot be applied. A naive protocol to achieve an envy-free division of mixed manna for three players needs an initial division of given mixed manna into eight pieces. This paper shows a new three-player envy-free discrete division protocol that needs an initial division into two pieces. After the initial division, it is shown that each of the pieces can be divided by modifying current envy-free cake-cutting and chore-division protocols.

Keywords: cake-cutting \cdot mixed manna \cdot chore-division \cdot divisible good \cdot envy-free.

1 Introduction

This paper proposes a three-player envy-free assignment protocol of a divisible good in which the utility of some portion of the good can be positive for some players and negative for the others. Many works have been done for the cakecutting problem, where a divisible good has some positive utility to every player. There are some surveys to these problems [7,8,14,17,18]. Some number of works have been done for a chore division problem, where a divisible good has some negative utility to every player [9,10,12,16]. The problem can be used to assign dirty work among people. There are some cases when a portion of a divisible good has some positive utility to some players but the same portion has some negative utility to the other players. For example, a child does not like chocolate but another child likes chocolate on a cake. A nation does not want a region where the religion believed by the residents is different from the national religion. A good which has such a property is called mixed manna. Very few works have been done for fair divisions of divisible mixed manna [19].

There are several assignment results for a given number of indivisible mixed manna [1-3, 5, 6, 11]. Ref. [19] proved the existence of a connected envy-free division of divisible mixed manna by three players. However, finding such a division cannot be done by a finite number of queries. Thus, a simple protocol to

2 Y. Okano and Y. Manabe

divide divisible mixed manna is necessary. The most widely discussed property that fair division protocols must satisfy is envy-freeness [7, 18]. An envy-free cake division among any number of players can be done by a fixed number of discrete operations [4]. An envy-free chore division among any number of players can also be done by a fixed number of discrete operations [9]. This paper discusses an envy-free division of mixed manna. The above cake-cutting or chore-division protocols cannot be used to divide mixed manna. A naive envyfree division protocol is shown in [19], which works for any number of players, needs many initial divisions. When the number of players is three, the manna must be initially divided into eight pieces. Thus, the protocol is not efficient. The protocol in [15] for three players needs an initial division into two pieces. Though the protocol achieves envy-free, the protocol is not discrete sine it uses a moving-knife procedure. We show a new discrete protocol for three players in which the initial division is the same as the one in [15]. After the initial division, it is shown that each of the pieces can be divided by modifying current envy-free cake-cutting and chore-division protocols.

Section 2 defines the problem. Section 3 shows the naive protocol. Section 4 shows the new protocol. Section 5 concludes the paper.

2 Preliminaries

Throughout the paper, mixed manna is a heterogeneous good that is represented by the interval [0, 1] on a real line. It can be cut anywhere between 0 and 1. Each player P_i has a utility function, μ_i , which has the following properties.

1. $\mu_i(X)$ can be positive or negative for any $X = [a, b](0 \ge a < b \le 1)$. 2. For any X_1 and X_2 such that $X_1 \cap X_2 = \emptyset$, $\mu_i(X_1 \cup X_2) = \mu_i(X_1) + \mu_i(X_2)$.

Note that $\mu_i(X)$ and $\mu_j(X)$ $(i \neq j)$ are independent, thus $\mu_i(X) > 0$ and $\mu_j(X) < 0$ for some X might occur.

Note that if the first condition is changed as $\mu_i([a, b]) \ge 0$ for any a, b, and i, the problem becomes cake-cutting. If the condition is changed as $\mu_i([a, b]) \le 0$ for any a, b, and i, the problem becomes chore-division.

The tuple of the utility function of $P_i(i = 1, 2, ..., n)$ is denoted as $(\mu_1, \mu_2, ..., \mu_n)$. No player knows the utility functions of the other players.

An *n*-player division protocol, f, assigns some portions of [0, 1] to each player such that every portion of [0, 1] is assigned to some player. This means that no portion of the manna is discarded. We denote $f_i(\mu_1, \mu_2, \ldots, \mu_n)$ as the set of portions assigned to the player P_i by f when the tuple of the utility functions is $(\mu_1, \mu_2, \ldots, \mu_n)$.

All players are risk-averse, namely, they avoid gambling. They try to maximize the worst utility they might obtain.

Several desirable properties of fair division protocols have been defined [7, 18]. One of the most widely considered property is envy-freeness. The definition of envy-free is as follows: for any $i, j(i \neq j), \mu_i(f_i(\mu_1, \mu_2, \ldots, \mu_n)) \geq \mu_i(f_j(\mu_1, \mu_2, \ldots, \mu_n))$. Envy-free means that every player thinks he has obtained more than or equal value to any other player.

3 A naive protocol for mixed manna

First, let us review an easy example of the two-player case shown in [19]. The Divide-and-chose protocol for the cake-cutting problem by two players works for any mixed manna. The Divide-and-choose is as follows: the first player, called Divider, cuts the cake into two pieces. The other player, called Chooser, selects the piece he wants among the two pieces. Divider obtains the remaining piece. The reason that Divide-and-choose works for mixed manna is as follows. Since Divider is a risk-averse player, Divider cuts the manna into two pieces [0, x] and [x, 1], such that $\mu_D([0, x]) = \mu_D([x, 1]) = 1/2\mu_D([0, 1])$ for Divider, whenever $\mu_D([0, 1]) \ge 0$ or $\mu_D([0, 1]) < 0$ holds. Otherwise, Chooser might select the better piece and Divider might obtain the worse piece. Since Divider cuts the manna into two equal utility pieces, Divider does not envy Chooser. Chooser selects the better piece among the two pieces. Thus, Chooser does not envy Divider. Therefore, Divide-and-choose can be used for an envy-free division of any mixed manna.

Next, let us consider a three-player case. Selfridge-Conway protocol [18], shown in Fig. 1, is a discrete cake-cutting protocol to achieve envy-freeness. The outline of the protocol is as follows. First, P_1 cuts the cake into three pieces whose utilities are the same for P_1 . If P_2 thinks the utility of the largest piece, $\mu_2(X_1)$, is larger than the one of the second-best piece, $\mu_2(X_2)$, P_2 cuts L from X_1 so that $\mu_2(X_1-L) = \mu_2(X_2)$. If P_2 thinks $\mu_2(X_1) = \mu_2(X_2)$, P_2 does nothing. Then, P_3 selects the best piece among $X_1 - L$, X_2 , and X_3 . Next, P_2 selects one piece between the remaining two pieces. In this case, if $X_1 - L$ remains, P_2 must select the piece. P_1 obtains the remaining piece. Note that this assignment is envy-free. Since P_3 first selects, P_3 obtains the best pieces whatever P_3 selects. Though P_1 obtains the remaining piece, the piece is not cut by P_2 , thus it is one of the best pieces for P_1 .

Next, L needs to be assigned if L is cut from X_1 at Step 5. Let P_b be the player who obtained $X_1 - L$ between P_2 and P_3 . Let P_a be the other player. P_a cuts L into three pieces whose utilities are the same for P_a . Then P_b , P_1 , and P_a select one piece in this order. P_b does not envy the other players since P_b selects first. P_a does not envy the other players because the utilities of the three pieces are the same. P_1 does not envy P_a because P_1 selects earlier than P_a . The reason why P_1 does not envy P_b is as follows. Since P_b obtains $X_1 - L$, the total utility of P_b is less than the utility of X_1 for P_1 . P_1 obtains at least $\mu_1(X_1)$, thus P_1 does not envy P_b .

This protocol cannot be used for mixed manna for several reasons. Though P_1 can cut the manna into three pieces X_1 , X_2 , and X_3 whose utilities are the same for P_1 , there can be a case when $\mu_2(X_1) > 0$ and $\mu_2(X_2) < 0$. In this case, P_2 might not be able to cut L from X_1 so that $\mu_2(X_1 - L) = \mu_2(X_2)$. Even if $\mu_2(X_1) > 0$, $\mu_2(X_2) > 0$, and P_2 can cut L from X_1 , there can be a case when $\mu_1(L) < 0$ and $X'_1 = X_1 - L$ becomes the best piece for P_1 . If P_2 or P_3 selects X'_1 , P_1 envies the player. A similar situation occurs at the assignment of L. P_a cuts L into three pieces L_1 , L_2 , and L_3 such that $\mu_a(L_1) = \mu_a(L_2) = \mu_a(L_3)$.

1 Begin $P_1^{'}$ cuts into three pieces so that the utilities of the pieces is the $\mathbf{2}$ same for P_1 . Let X_1, X_2, X_3 be the pieces where $\mu_2(X_1) \geq \mu_2(X_2) \geq \mu_2(X_3)$. 3 If $\mu_2(X_1) > \mu_2(X_2)$ Then 4 P_2 cuts L from X_1 so that $\mu_2(X_1') = \mu_2(X_2)$, where $X_1' = X_1 - L$. 5 P_3 selects the largest (for P_3) among X'_1, X_2 , and X_3 . 6 If X'_1 remains Then 7 8 P_2 must select X'_1 . Let (P_a, P_b) be (P_3, P_2) . 9 10 Else P_2 selects X_2 . /* the largest for P_2 */ 11 Let (P_a, P_b) be (P_2, P_3) . 12 P_1 obtains the remaining piece. 13If L is not empty Then 14 P_a cuts L into three pieces so that P_a considers their utilities 15are the same. P_b, P_1 , and P_a selects one piece in this order. 16 17 End.

Fig. 1. Selfridge-Conway three-player envy-free cake-cutting protocol [18].

 P_b selects the best piece, say L_1 . P_1 then selects one of the remaining pieces, say L_2 . In this situation, $\mu_1(L_1) > \mu_1(L) + \mu_1(L_2)$ might occur if $\mu_1(L_3)$ is a very large negative value. In this case, $\mu_1(X_1 - L) + \mu_1(L_1) > \mu_1(X_3) + \mu_1(L_2)$ holds, where X_3 is the piece selected by P_1 at Step 13. Thus, P_1 envies P_b and envy-freeness is not satisfied. Therefore, the Selfridge-Conway protocol cannot be used for mixed manna.

Oskui's three-player envy-free chore division protocol [18], shown in Fig. 2, cannot be used for mixed manna for similar reasons. After P_1 cuts the manna into X_1 , X_2 , and X_3 and X_1 is the best piece for P_2 and P_3 , P_2 cannot cut the manna so that $\mu_2(X_1) = \mu_2(X_2 - E) = \mu_2(X_3 - F)$ is satisfied, if $\mu_2(X_1) > 0$, $\mu_2(X_2) < 0$, and $\mu_2(X_3) < 0$. Even if $\mu_2(X_1) < 0$, $\mu_2(X_2) < 0$, $\mu_2(X_3) < 0$ and P_2 cuts E from X_2 and F from X_3 so that $\mu_2(X_1) = \mu_2(X_2 - E) = \mu_2(X_3 - F)$ is satisfied, there can be a case when $\mu_1(E) > 0$, $\mu_1(F) > 0$, and P_1 envies P_3 by the assignment at Step 11. Therefore, protocols for mixed manna must be newly considered.

A naive envy-free assignment protocol for mixed manna is shown in [19]. First, divide the manna as follows:

- X_{123} such that any portion $x \subseteq X_{123}$ satisfies $\mu_i(x) \ge 0$ for every player $P_i(i = 1, 2, 3)$.
- $-X_{ij}(i, j = 1, 2, 3, i < j)$ such that any portion $x \subseteq X_{ij}$ satisfies $\mu_i(x) \ge 0$, $\mu_j(x) \ge 0$, and $\mu_k(x) < 0$ for the other player P_k .
- X_i (i = 1, 2, 3) such that any portion $x \subseteq X_i$ satisfies $\mu_i(x) \ge 0$ and $\mu_j(x) < 0$ for $j \ne i$.
- The remaining portion X_0 such that any portion $x \subseteq X_0$ satisfies $\mu_i(x) < 0$ for i = 1, 2, 3.

1 Begin $\mathbf{2}$ P_1 cuts into three pieces X_1, X_2, X_3 so that $\mu_1(X_1) = \mu_1(X_2) = \mu_1(X_3)$ is satisfied. If the best piece for \mathcal{P}_2 and \mathcal{P}_3 differs Then 3 P_2 and P_3 select the best piece. P_1 obtains the remaining piece. 4 Else /* Let X_1 be the best piece for P_2 and P_3 . */ P_2 cuts E from X_2 and F from X_3 so that 56 $\mu_2(X_1) = \mu_2(X_2 - E) = \mu_2(X_3 - F)$ is satisfied. 7 If $\mu_3(X_2 - E) \le \mu_3(X_1)$ and $\mu_3(X_3 - F) \le \mu_3(X_1)$ Then P_1, P_3 , and P_2 select one piece in this order among $X_1, X_2 - E$, and $X_3 - F$. 8 Wlog P_1 selects $X_2 - E$. P_3 selects X_1 . P_2 obtains $X_3 - F$. P_2 cuts E and F into three pieces E_1, E_2, E_3 and F_1, F_2, F_3 so that 9 10 $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F_1) = \mu_2(F_2) = \mu_2(F_3)$ are satisfied. $P_3,P_1, \ {\rm and} \ P_2 \ {\rm select} \ {\rm one} \ {\rm piece} \ {\rm among} \ E {\rm s} \ {\rm and} \ F {\rm s} \ {\rm in} \ {\rm this} \ {\rm order}.$ 11 Else if $\mu_3(X_1) \leq \mu_3(X_2 - E)$ and $\mu_3(X_1) \leq \mu_3(X_3 - F)$ Then P_3 cuts $E' \subseteq E$ and $F' \subseteq F$ so that $\mu_3(X_2 - E') = \mu_3(X_3 - F') = \mu_3(X_1)$ are satisfied. 1213 Execute Step 8-11 by changing the roles of P_2 and P_3 and renaming 14 (E',F') to (E,F). Else /* $\mu_3(X_1)$ is between $\mu_3(X_2-E)$ and $\mu_3(X_3-F)$. */ 15Wlog $\mu_3(X_2 - E) \leq \mu_3(X_1) \leq \mu_3(X_3 - F)$ holds. P_3 cuts $F' \subseteq F$ so that $\mu_3(X_3 - F') = \mu_3(X_1)$ is satisfied. 16 17 P_1 selects the best piece between X_2-E and $X_3-F^\prime\,.$ If P_1 selects X_2-E Then 1819 P_2 obtains X_1 . P_3 obtains $X_3 - F'$. P_3 cuts E and F' into three pieces E_1, E_2, E_3 and F'_1, F'_2, F'_3 so 2021that $\mu_3(E_1) = \mu_3(E_2) = \mu_3(E_3)$ and $\mu_3(F_1') = \mu_3(F_2') = \mu_3(F_3')$ are satisfied. P_2, P_1 , and P_3 select one piece among Es and F's in this order. Else /* P_1 selects $X_3 - F'$. */ P_2 obtains $X_2 - E$. P_3 obtains X_1 . 222324 P_2 cuts E and F' into three pieces E_1, E_2, E_3 and F'_1, F'_2, F'_3 so 25that $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F_1') = \mu_2(F_2') = \mu_2(F_3')$ are satisfied. P_3, P_1 , and P_2 select one piece among Es and F's in this order. 2627 End

Fig. 2. Oskui's three-player envy-free chore division protocol [18].

Then, the Selfridge-Conway protocol is executed among all players for X_{123} . Divide-and-choose is executed to X_{ij} between P_i and P_j . X_i is given to P_i . Last, three-player envy-free chore division protocol [18] is executed for X_0 . Similar procedures can be considered for any number of players. Though this procedure achieves an envy-free assignment, the procedure to initially divide the manna is complicated. The mixed manna must be divided into the above eight pieces. Note that each of the eight pieces might not be connected. For example, disconnected multiple portions might satisfy $\mu_i(x) \geq 0$ for all players, thus X_{123} might consist of multiple portions. Thus, the number of cuts to obtain the above eight pieces might be more than eight. When $P_i(i = 1, 2, 3)$ needs to cut the manna c_i times to divide into non-negative regions and negative regions for P_i , the manna needs to be cut $c_1 + c_2 + c_3$ times in the worst case. This paper considers reducing the procedure of the initial division. The protocol in [15] is not discrete since the protocol uses a moving-knife procedure. Thus this paper proposes a new discrete protocol that does not use a moving-knife procedure.

4 A new protocol for mixed manna

This section shows a new three-player envy-free division protocol for mixed manna in which the number of the initial division is reduced. Initially, cut the manna as follows: X^+ such that any portion $x \subseteq X^+$ satisfies $\mu_1(x) \ge 0$. $X^$ such that any portion $x \subseteq X^-$ satisfies $\mu_1(x) < 0$. $X^+(X^-)$ is the portion with non-negative (negative) utility for P_1 . The manna must be cut c_1 times. Note that by a renaming of the players, c_1 can be selected as $\min_i c_i$. Thus, the number of cuts necessary for the initial division is reduced compared to the naive protocol in [19]. $X^+(X^-)$ might consist of multiple disconnected pieces. In this case, the disconnected pieces are collected to make one piece. X^+ and X^- might contain both positive and negative portions for the other players.

The assignment of X^+ uses the protocol in [15]. The protocol is shown in Fig. 3, in which the Selfridge-Conway protocol is modified. Initially, P_1 cuts X^+ into three pieces. If both of P_2 and P_3 think at most one piece has a non-negative utility, an envy-free assignment is easily obtained. If P_2 or P_3 thinks that at least two pieces have a non-negative utility, the Selfridge-Conway protocol can be executed because P_1 thinks any portion of X^+ has a non-negative utility.

Theorem 1. [15] The assignment result of X^+ by the protocol in Fig. 3 is envy-free.

Proof. First, consider the case when both of P_2 and P_3 consider that at most one piece among X_1^+ , X_2^+ , and X_3^+ has a non-negative utility. Consider the subcase when both of P_2 and P_3 think the same piece, say X_1^+ , has a non-negative utility. P_2 and P_3 execute Divide-and-choose on X_1^+ . Let P_2 and P_3 obtain X_{12}^+ and X_{13}^+ , respectively. Since $X_1^+ = X_{12}^+ \cup X_{13}^+$ and any portion of X_1^+ has a non-negative utility for P_1 , $\mu_1(X_{12}^+) \leq \mu_1(X_1^+) = \mu_1(X_2^+)$ and $\mu_1(X_{13}^+) \leq \mu_1(X_1^+) = \mu_1(X_2^+)$ hold. Since P_1 obtains X_2^+ and X_3^+ , P_1 does not envy P_2 or P_3 . P_2 and P_3 do not envy each other because of the envy-freeness of Divide-and-choose. P_2 does

1 Begin P_1 cuts into three pieces X_1^+, X_2^+ , and X_3^+ so that $\mu_1(X_1^+) = \mu_1(X_2^+) = \mu_1(X_3^+)$. If P_2 and P_3 consider at most one piece has a non-negative utility $\mathbf{2}$ 3 Then If P_2 and P_3 consider the same piece (say, X_1^+) has a non-negative 4 utility Then P_2 and P_3 execute Divide-and-choose on X_1^+ . 5 P_1 obtains X_2^+ and X_3^+ . 6 Else 7 Each of P_2 and P_3 obtains at most one piece with a non-negative 8 utility. P_1 obtains the remaining piece(s). 9 Else 10 Let P_2 be a player who considers two pieces have some non-negative 11 utilitv. Rename the pieces so that $\mu_2(X_1^+) \ge \mu_2(X_2^+) \ge \mu_2(X_3^+)$. 12Execute the Selfridge-Conway protocol from Step 4 with the three 13pieces. 14 End.

Fig. 3. Three-player envy-free protocol for X^+ [15].

not envy P_1 , since $\mu_2(X_2^+) < 0$ and $\mu_2(X_3^+) < 0$ hold. Similarly, P_3 does not envy P_1 .

Next, consider the subcase when no piece has a non-negative utility for both of P_2 and P_3 . In this case, P_2 and P_3 can obtain at most one piece whose utility is not negative for the player. P_1 obtains the remaining pieces, which have a negative utility for both of P_2 and P_3 . Thus, every player does not envy the other players.

Next, consider the case when one player, say P_2 , thinks two pieces have a non-negative utility. In this case, the Selfridge-Conway protocol can be executed. The reason is as follows. P_2 can cut L from X_1^+ if $\mu_2(X_1^+) > \mu_2(X_2^+)$ since both of these utilities are non-negative. Each player can select one piece among $X_1^{'+}$, X_2^+ , and X_3^+ . The assignment result is envy-free, since P_3 selects first, there are two equal utility pieces for P_2 , and P_1 can obtain one full-size piece (Note that any portion of X^+ has non-negative utility for P_1 , thus $\mu_1(X_1^{'+}) \leq \mu_1(X_1^+)$ holds). An envy-free assignment of L can also be realized. Even if the utility is positive or negative, P_a can cut L into three pieces with the same utility. P_a does not envy any other players since the three pieces have the same utility. P_b does not obtain 1/3 of X^+ (Note again P_1 thinks any portion of X^+ has a non-negative utility). P_1 does not envy P_a since P_1 selects a piece before P_a .

Next, X^- needs to be assigned. The protocol for X^- in [15] is not a discrete protocol. This paper shows a new discrete protocol. We modify the three-player

8 Y. Okano and Y. Manabe

envy-free chore division protocol shown in Fig. 2. The detailed protocol is shown in Fig. 4. The main differences between Oskui's protocol are these three points:

- 1. any portion $x \subseteq X^-$ has a negative utility for P_1 by the definition.
- 2. At Step 5, when the best piece (X_1^-) is the same for P_2 and P_3 , both players must have a negative utility for X_1^- .
- 3. At Step 13, when P_2 cuts E from X_2^- and F from X_3^- , E and F must be selected so that any portion of $E \cup F$ has a negative utility for P_2 .

The reason for the necessity of the conditions is as follows: (1) P_1 must not envy for the assignment at Step 7, Step 10, Step 18, Step 29, and Step 33. The detail is shown in the proof. (2) At step 13, P_2 must be able to cut E from $X_2^$ and F from X_3^- so that $\mu_2(X_1^-) = \mu_2(X_2^- - E) = \mu_2(X_3^- - F), \ \mu_2(X_1^-) < 0, \ \mu_2(X_2^-) < 0$, and $\mu_2(X_3^-) < 0$ are satisfied. For example, if $\mu_2(X_1^-) > 0$ and $\mu_2(X_2^-) < 0$, cutting E might not be able to be executed. (3) If E or F has a portion whose utility is positive for P_2 , when P_3 cuts E' and F' at Step 20, the new $X_2^- - E'$ or $X_3^- - F'$ might become the best piece for P_2 and an envy-free assignment cannot be obtained at Step 15.

Theorem 2. The assignment result of X^- by the protocol in Fig. 4 is envy-free.

Proof. In the protocol, P_1 cuts X^- into three pieces X_1^- , X_2^- , and X_3^- so that $\mu_1(X_1^-) = \mu_2(X_2^-) = \mu_2(X_3^-) < 0$ is satisfied. First, P_2 and P_3 chooses the best piece. If the best pieces differ, an envy-free assignment is achieved when P_2 and P_3 selects its best piece and P_1 obtains the remaining piece. Note that even if P_2 or P_3 has more than one best piece, an envy-free assignment exists. For example, if P_2 has more than one best piece, P_3 , P_2 , and P_1 selects one piece in this order. After P_3 selects one piece, there is at least one remaining piece whose utility is the best for P_2 . Thus, an envy-free assignment can be achieved.

Therefore, the remaining case to consider is P_2 and P_3 have the same best piece, say X_1^- . We assume that $\mu_2(X_1^-) < 0$ and $\mu_3(X_1^-) < 0$ are satisfied. Otherwise, X_1^- can be assigned to the players who have a non-negative utility by the Steps 6-11. If $\mu_2(X_1^-) \ge 0$ and $\mu_3(X_1^-) \ge 0$, X_1^- is divided between P_2 and P_3 using Divide-and-choose. If one of P_2 or P_3 has a non-negative utility to X_1^- , X_1^- is given to the player without envy. Then, the procedure is executed again for the remaining pieces.

Thus, we assume that $\mu_2(X_1^-) < 0$ and $\mu_3(X_1^-) < 0$. Since X_1^- is the best piece for P_2 and P_3 , $\mu_2(X_2^-) \le \mu_2(X_1^-) < 0$, $\mu_2(X_3^-) \le \mu_2(X_1^-) < 0$, $\mu_3(X_2^-) \le \mu_3(X_1^-) < 0$, and $\mu_3(X_3^-) \le \mu_3(X_1^-) < 0$ are satisfied. Note that X^- might have some portions whose utility is positive for P_2 and/or P_3 . P_2 cuts E from X_2^- and F from X_3^- so that $\mu_2(X_1^-) = \mu_2(X_2^- - E) = \mu_2(X_3^- - F)$ with the condition that any portion $x \subseteq E \cup F$ satisfies $\mu_2(x) < 0$. P_2 can execute this operation because $\mu_2(X_2^-) \le \mu_2(X_1^-) < 0$ and $\mu_2(X_3^-) \le \mu_2(X_1^-) < 0$. Note that E and F might not be a connected component. In that case, connect these pieces and treat E and F as a single piece. As the original Oskui's protocol, we consider the following three cases.

(Case 1) $\mu_3(X_2^- - E) \le \mu_3(X_1^-)$ and $\mu_3(X_3^- - F) \le \mu_3(X_1^-)$. In this case, P_1, P_3 , and P_2 selects one piece in this order among $X_1^-, X_2^- - E$,

1 Begin P_1 cuts X^- into three pieces X_1^-,X_2^- , and X_3^- so that $\mu_1(X_1^-)=\mu_2(X_2^-)=\mu_2(X_3^-)$ is satisfied. If the best piece for P_2 and P_3 differs Then 2 3 P_2 and P_3 selects the best piece. P_1 obtains the remaining piece. 4 $\mathbf{5}$ Else /* Let X_1^- be the best piece for P_2 and P_3 . */ If $\mu_2(X_1^-) \ge 0$ and $\mu_3(X_1^-) \ge 0$ Then 6 Execute Divide-and-choose on X_1^- between P_2 and P_3 . 7 Let $X^-=X_2^-\cup X_3^-$ and goto 2: 8 9 Else if $\mu_2(X_1^-) \ge 0$ or $\mu_3(X_1^-) \ge 0$ Then Assign X_1^- to the player who thinks $\mu(X_1^-) \geq 0.$ 10 Let $X^-=X_2^-\cup X_3^-$ and goto 2: 11 Else /* $\mu_2(X_1^2) < 0$ and $\mu_3(X_1^-) < 0$. */ P_2 cuts E from X_2^- and F from X_3^- so that $\mu_2(X_1^-) = \mu_2(X_2^- - E) = \mu_2(X_3^- - F)$ is satisfied with the condition that any portion $x \in E \cup F$ satisfies $\mu_2(x) < 0$. 1213 If $\mu_3(X_2^- - E) \le \mu_3(X_1^-)$ and $\mu_3(X_3^- - F) \le \mu_3(X_1^-)$ Then 14 $P_1,P_3,$ and P_2 select one piece in this order among $X_1^-,X_2^--E,$ 15and $X_3^- - F$. Wing P_1 selects $X_2^- - E$. P_3 selects X_1^- . P_2 obtains $X_3^- - F$. P_2 cuts E and F into three pieces E_1, E_2, E_3 and F_1, F_2, F_3 so that $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F_1) = \mu_2(F_2) = \mu_2(F_3)$ are 16 17satisfied. $P_3, P_1,$ and P_2 select one piece among Es and Fs in this order. 18 Else if $\mu_3(X_1^-) \le \mu_3(X_2^- - E)$ and $\mu_3(X_1^-) \le \mu_3(X_3^- - F)$ Then P_3 cuts $E' \subseteq E$ and $F' \subseteq F$ so that $\mu_3(X_2^- - E') = \mu_3(X_3^- - F') = \mu_3(X_1^-)$ are satisfied. 19 2021Execute Step 15-18 by changing the roles of P_2 and P_3 and renaming (E',F') to (E,F). Else /* $\mu_3(X_1^-)$ is between $\mu_3(X_2^- - E)$ and $\mu_3(X_3^- - F)$. */ Wlog $\mu_3(X_2^- - E) \le \mu_3(X_1^-) \le \mu_3(X_3^- - F)$ holds. P_3 cuts $F' \subseteq F$ so that $\mu_3(X_3^- - F') = \mu_3(X_1^-)$ is satisfied. 22232425 P_1 selects the best piece between X_2^--E and $X_3^--F^\prime.$ If P_1 selects $X_2^- - E$ Then 26 P_3 obtains $X_3^- - F'$. P_2 obtains X_1^- . 27 $P_3^{"}$ cuts E and F' into three pieces E_1, E_2, E_3 and F_1', F_2', F_3' so 28that $\mu_3(E_1) = \mu_3(E_2) = \mu_3(E_3)$ and $\mu_3(F_1) = \mu_3(F_2) = \mu_3(F_3)$ are satisfied. P_2, P_1 , and P_3 select one piece among Es and F's in this order Else /* P_1 selects $X_3^- - F'$. */ P_2 obtains $X_2^- - E$. P_3 obtains X_1^- . 2930 31 P_2 cuts E and F' into three pieces E_1, E_2, E_3 and F'_1, F'_2, F'_3 so 32 that $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F_1') = \mu_2(F_2') = \mu_2(F_3')$ are satisfied. P_3, P_1 , and P_2 select one piece among Es and F's in this order 33 34 End.

Fig. 4. Three-player envy-free division protocol for X^- .

10 Y. Okano and Y. Manabe

and $X_3^- - F$. P_1 never selects X_1^- since every portion of $X_2^- \cup X_3^-$ has a negative utility for P_1 . Without loss of generality, suppose that P_1 selects $X_2^- - E$. P_3 selects X_1^- since it is the best piece for P_3 . Thus P_2 obtains $X_3^- - F$. This assignment is envy-free. P_1 does not envy since P_1 selects first. P_2 does not envy since P_2 thinks the three pieces have the same utility.

Last, E and F need to be assigned. P_2 cuts E and F into three pieces E_1 , E_2 , E_3 and F_1 , F_2 , F_3 so that $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F_1) = \mu_2(F_2) = \mu_2(F_3)$ are satisfied. P_3 , P_1 and P_2 select one piece among Es and Fs in this order. P_3 does not envy the other players since P_3 selects first. P_2 does not envy the other players since P_3 selects are the same. P_1 does not envy P_2 since P_1 selects earlier than P_2 . The reason why P_1 does not envy P_3 is as follows: $\mu_1(E) \leq \mu_1(F)$ is satisfied since P_1 selects $X_2^- - E$. Thus, by the selection of a piece of E and F, P_1 obtains even in the worst case $1/2(\mu_1(E) + \mu_1(F)) \geq \mu_1(E)$, since every portion of X^- has a negative utility for P_1 . Thus, P_1 does not envy P_3 who obtains X_1^- and some pieces of E and F. Note again the utilities of any portion of E and F are negative for P_1 .

(Case 2) $\mu_3(X_1^-) \leq \mu_3(X_2^- - E)$ and $\mu_3(X_1^-) \leq \mu_3(X_3^- - F)$. P_3 cuts $E' \subseteq E$ and $F' \subseteq F$ that satisfy $\mu_3(X_2^- - E') = \mu_3(X_1^-)$ and $\mu_3(X_3^- - F') = \mu_3(X_1^-)$. Such a cut is possible since $\mu_3(X_2^-) \leq \mu_3(X_1^-) < 0$ and $\mu_3(X_2^-) \leq \mu_3(X_1^-) < 0$ are satisfied. Since any portion of $E \cup F$ has a negative utility for P_2 , $\mu_2(X_1^-) \geq \mu_2(X_2^- - E')$ and $\mu_2(X_1^-) \geq \mu_2(X_3^- - F')$ are satisfied. Now, rename E' to E and F' to F. Then, the condition of (Case 1) is satisfied by P_2 . Thus, by changing the roles of P_2 and P_3 , the procedure of (Case 1) can be executed and an envy-free assignment can be obtained.

(Case 3) $\mu_3(X_1^-)$ is between $\mu_3(X_2^- - E)$ and $\mu_3(X_3^- - F)$. Without loss of generality, suppose that $\mu_3(X_2^- - E) \leq \mu_3(X_1^-) \leq \mu_3(X_3^- - F)$ holds. In this case, P_3 cuts $F' \subseteq F$ that satisfies $\mu_3(X_3^- - F') = \mu_3(X_1^-)$. This operation is possible for P_3 since $\mu_3(X_3^-) \leq \mu_3(X_1^-) < 0$ is satisfied. P_1 selects the best piece between $X_2^- - E$ and $X_3^- - F'$. Note that X_1^- cannot be the best piece for P_1 since $\mu_1(X_1^-) = \mu_1(X_2^-) = \mu_1(X_3^-)$.

(Case 3-1) P_1 selects $X_2^- - E$.

In this subcase, P_3 obtains $X_3^- - F'$. P_2 obtains X_1^- . P_1 does not envy the other players since P_1 selects first. P_3 does not envy the other players since $\mu_3(X_3^- - F') = \mu_3(X_1^-) \ge \mu_3(X_2^- - E)$ holds. P_2 does not envy the other players since $\mu_2(X_1^-) = \mu_2(X_2^- - E) \ge \mu_2(X_3^- - F')$ is satisfied.

Last, E and F' need to be assigned. P_3 cuts E and F' into three pieces E_1 , E_2 , E_3 and F'_1 , F'_2 , F'_3 so that $\mu_3(E_1) = \mu_3(E_2) = \mu_3(E_3)$ and $\mu_3(F'_1) = \mu_3(F'_2) = \mu_3(F'_3)$ are satisfied. P_2 , P_1 , and P_3 select one piece among E_3 and F'_3 in this order.

Envy-freeness for P_3 and P_2 are the same as the reason of (Case 1). The reason why P_1 does not envy P_2 is as follows: $\mu_1(E) \leq \mu_1(F')$ is satisfied since P_1 selects $X_2^- - E$. Thus, by the selection of a piece of E and F', P_1 obtains even in the worst case $1/2(\mu_1(E) + \mu_1(F')) \geq \mu_1(E)$. Thus, P_1 obtains in the worst case $\mu_1(X_2^- - E) + \mu_1(E) = \mu_1(X_2^-) = \mu_1(X_1^-)$. Therefore, P_1 does not envy P_2 who obtains X_1^- and some pieces of E and F'.

(Case 3-2) P_1 selects $X_3^- - F'$

In this subcase, P_2 obtains $X_2^- - E$. P_3 obtains X_1^- . P_1 does not envy the other players since P_1 selects first. P_3 does not envy to the other players since $\mu_3(X_3^- - F') = \mu_3(X_1^-) \ge \mu_3(X_2^- - E)$ holds. P_2 does not envy the other players since $\mu_2(X_1^-) = \mu_2(X_2^- - E) \ge \mu_2(X_3^- - F')$ is satisfied. Last, E and F' need to be assigned. P_2 cuts E and F' into three pieces

Last, E and F' need to be assigned. P_2 cuts E and F' into three pieces E_1, E_2, E_3 and F'_1, F'_2, F'_3 so that $\mu_2(E_1) = \mu_2(E_2) = \mu_2(E_3)$ and $\mu_2(F'_1) = \mu_2(F'_2) = \mu_2(F'_3)$ are satisfied. P_3, P_1 and P_2 select one piece among E_3 and F'_3 in this order. Envy-freeness for P_3 and P_2 are the same as the reason of (Case 1). The reason why P_1 does not envy P_3 is as follows: $\mu_1(E) \ge \mu_1(F')$ is satisfied since P_1 selects $X_3^- - F'$. Thus, by the selection of a piece of E and F', P_1 obtains even in the worst case $1/2(\mu_1(E) + \mu_1(F')) \ge \mu_1(F')$. Thus, P_1 obtains in the worst case $\mu_1(X_3^- - F') + \mu_1(F') = \mu_1(X_3^-) = \mu_1(X_1^-)$. Therefore, P_1 does not envy P_3 who obtains X_1^- and some pieces of E and F'.

5 Conclusion

This paper showed a three-player discrete envy-free division protocol for mixed manna. This protocol reduces the initial division by the naive protocol. Note that the initial division still needs $\min_i c_i$ cuts, thus elimination of the initial division is the most important open problem. Also, each player's role in the protocol differs among the players and meta-envy [13] exists. A meta-envy-free protocol is necessary for ideal fairness.

References

- 1. Aleksandrov, M.: Jealousy-freeness and other common properties in fair division of mixed manna. arXiv preprint arXiv:2004.11469 (2020)
- 2. Aleksandrov, M., Walsh, T.: Two algorithms for additive and fair division of mixed manna (2020)
- 3. Aziz, H., Caragiannis, I., Igarashi, A., Walsh, T.: Fair allocation of combinations of indivisible goods and chores. arXiv preprint arXiv:1807.10684 (2018)
- 4. Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol for any number of agents. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). pp. 416–427. IEEE (2016)
- Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaya, E.: Dividing goods and bads under additive utilities. Higher School of Economics Research Paper No. WP BRP 153 (2016)
- Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaya, E., et al.: Competitive division of a mixed manna. Econometrica 85(6), 1847–1871 (2017)
- Brams, S.J., Taylor, A.D.: Fair Division: From cake-cutting to dispute resolution. Cambridge University Press (1996)
- 8. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook of computational social choice. Cambridge University Press (2016)

- 12 Y. Okano and Y. Manabe
- Dehghani, S., Farhadi, A., HajiAghayi, M., Yami, H.: Envy-free chore division for an arbitrary number of agents. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 2564–2583. SIAM (2018)
- Farhadi, A., Hajiaghayi, M.T.: On the complexity of chore division. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. pp. 226–232. AAAI Press (2018)
- Garg, J., McGlaughlin, P.: Computing competitive equilibria with mixed manna. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. pp. 420–428 (2020)
- Heydrich, S., van Stee, R.: Dividing connected chores fairly. Theoretical Computer Science 593, 51–61 (2015)
- Manabe, Y., Okamoto, T.: Meta-envy-free cake-cutting and pie-cutting protocols. Journal of information processing 20(3), 686–693 (2012)
- 14. Moulin, H.: Fair division in the age of internet. Annual Review of Economics (2018)
- Okano, Y., Manabe, Y.: A three-player envy-free division protocol for mixed manna. In: Proc. of International Conference on Information Technology and Computer Science(ICITCS 2018) (2018)
- Peterson, E., Su, F.E.: Four-person envy-free chore division. Mathematics Magazine 75(2), 117–122 (2002)
- Procaccia, A.D.: Cake cutting: not just child's play. Commun. ACM 56(7), 78–87 (2013)
- Robertson, J., Webb, W.: Cake-cutting algorithms: Be fair if you can. AK Peters/CRC Press (1998)
- Segal-Halevi, E.: Fairly dividing a cake after some parts were burnt in the oven. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. pp. 1276–1284. International Foundation for Autonomous Agents and Multiagent Systems (2018)