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Abstract. This paper proposes a three-player envy-free discrete assign-
ment protocol of a divisible good, in which the utility of some portion
of the good can be positive for some players and negative for the others.
Such a good is called mixed manna. For mixed manna, current discrete
envy-free cake-cutting or chore-division protocols cannot be applied. A
naive protocol to achieve an envy-free division of mixed manna for three
players needs an initial division of given mixed manna into eight pieces.
This paper shows a new three-player envy-free discrete division protocol
that needs an initial division into two pieces. After the initial division,
it is shown that each of the pieces can be divided by modifying current
envy-free cake-cutting and chore-division protocols.

Keywords: cake-cutting · mixed manna · chore-division · divisible good
· envy-free.

1 Introduction

This paper proposes a three-player envy-free assignment protocol of a divisible
good in which the utility of some portion of the good can be positive for some
players and negative for the others. Many works have been done for the cake-
cutting problem, where a divisible good has some positive utility to every player.
There are some surveys to these problems [7,8,14,17,18]. Some number of works
have been done for a chore division problem, where a divisible good has some
negative utility to every player [9,10,12,16]. The problem can be used to assign
dirty work among people. There are some cases when a portion of a divisible
good has some positive utility to some players but the same portion has some
negative utility to the other players. For example, a child does not like chocolate
but another child likes chocolate on a cake. A nation does not want a region where
the religion believed by the residents is different from the national religion. A
good which has such a property is called mixed manna. Very few works have
been done for fair divisions of divisible mixed manna [19].

There are several assignment results for a given number of indivisible mixed
manna [1–3, 5, 6, 11]. Ref. [19] proved the existence of a connected envy-free
division of divisible mixed manna by three players. However, finding such a
division cannot be done by a finite number of queries. Thus, a simple protocol to
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divide divisible mixed manna is necessary. The most widely discussed property
that fair division protocols must satisfy is envy-freeness [7, 18]. An envy-free
cake division among any number of players can be done by a fixed number
of discrete operations [4]. An envy-free chore division among any number of
players can also be done by a fixed number of discrete operations [9]. This
paper discusses an envy-free division of mixed manna. The above cake-cutting or
chore-division protocols cannot be used to divide mixed manna. A naive envy-
free division protocol is shown in [19], which works for any number of players,
needs many initial divisions. When the number of players is three, the manna
must be initially divided into eight pieces. Thus, the protocol is not efficient.
The protocol in [15] for three players needs an initial division into two pieces.
Though the protocol achieves envy-free, the protocol is not discrete sine it uses
a moving-knife procedure. We show a new discrete protocol for three players in
which the initial division is the same as the one in [15]. After the initial division,
it is shown that each of the pieces can be divided by modifying current envy-free
cake-cutting and chore-division protocols.

Section 2 defines the problem. Section 3 shows the naive protocol. Section 4
shows the new protocol. Section 5 concludes the paper.

2 Preliminaries

Throughout the paper, mixed manna is a heterogeneous good that is represented
by the interval [0, 1] on a real line. It can be cut anywhere between 0 and 1. Each
player Pi has a utility function, µi, which has the following properties.

1. µi(X) can be positive or negative for any X = [a, b](0 ≥ a < b ≤ 1).
2. For any X1 and X2 such that X1 ∩X2 = ∅, µi(X1 ∪X2) = µi(X1) +µi(X2).

Note that µi(X) and µj(X)(i 6= j) are independent, thus µi(X) > 0 and µj(X) <
0 for some X might occur.

Note that if the first condition is changed as µi([a, b]) ≥ 0 for any a, b, and i,
the problem becomes cake-cutting. If the condition is changed as µi([a, b]) ≤ 0
for any a, b, and i, the problem becomes chore-division.

The tuple of the utility function of Pi(i = 1, 2, . . . , n) is denoted as (µ1, µ2, . . . , µn).
No player knows the utility functions of the other players.

An n-player division protocol, f , assigns some portions of [0, 1] to each player
such that every portion of [0, 1] is assigned to some player. This means that no
portion of the manna is discarded. We denote fi(µ1, µ2, . . . , µn) as the set of
portions assigned to the player Pi by f when the tuple of the utility functions
is (µ1, µ2, . . . , µn).

All players are risk-averse, namely, they avoid gambling. They try to maxi-
mize the worst utility they might obtain.

Several desirable properties of fair division protocols have been defined [7,
18]. One of the most widely considered property is envy-freeness. The defi-
nition of envy-free is as follows: for any i, j(i 6= j), µi(fi(µ1, µ2, . . . , µn)) ≥
µi(fj(µ1, µ2, . . . , µn)). Envy-free means that every player thinks he has obtained
more than or equal value to any other player.
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3 A naive protocol for mixed manna

First, let us review an easy example of the two-player case shown in [19]. The
Divide-and-chose protocol for the cake-cutting problem by two players works for
any mixed manna. The Divide-and-choose is as follows: the first player, called
Divider, cuts the cake into two pieces. The other player, called Chooser, selects
the piece he wants among the two pieces. Divider obtains the remaining piece.
The reason that Divide-and-choose works for mixed manna is as follows. Since
Divider is a risk-averse player, Divider cuts the manna into two pieces [0, x] and
[x, 1], such that µD([0, x]) = µD([x, 1]) = 1/2µD([0, 1]) for Divider, whenever
µD([0, 1]) ≥ 0 or µD([0, 1]) < 0 holds. Otherwise, Chooser might select the
better piece and Divider might obtain the worse piece. Since Divider cuts the
manna into two equal utility pieces, Divider does not envy Chooser. Chooser
selects the better piece among the two pieces. Thus, Chooser does not envy
Divider. Therefore, Divide-and-choose can be used for an envy-free division of
any mixed manna.

Next, let us consider a three-player case. Selfridge-Conway protocol [18],
shown in Fig. 1, is a discrete cake-cutting protocol to achieve envy-freeness. The
outline of the protocol is as follows. First, P1 cuts the cake into three pieces
whose utilities are the same for P1. If P2 thinks the utility of the largest piece,
µ2(X1), is larger than the one of the second-best piece, µ2(X2), P2 cuts L from
X1 so that µ2(X1−L) = µ2(X2). If P2 thinks µ2(X1) = µ2(X2), P2 does nothing.
Then, P3 selects the best piece among X1−L, X2, and X3. Next, P2 selects one
piece between the remaining two pieces. In this case, if X1−L remains, P2 must
select the piece. P1 obtains the remaining piece. Note that this assignment is
envy-free. Since P3 first selects, P3 obtains the best piece for P3. Since P2 makes
two equal-value pieces, P2 can obtain one of the best pieces whatever P3 selects.
Though P1 obtains the remaining piece, the piece is not cut by P2, thus it is one
of the best pieces for P1.

Next, L needs to be assigned if L is cut from X1 at Step 5. Let Pb be the
player who obtained X1 −L between P2 and P3. Let Pa be the other player. Pa

cuts L into three pieces whose utilities are the same for Pa. Then Pb, P1, and
Pa select one piece in this order. Pb does not envy the other players since Pb

selects first. Pa does not envy the other players because the utilities of the three
pieces are the same. P1 does not envy Pa because P1 selects earlier than Pa. The
reason why P1 does not envy Pb is as follows. Since Pb obtains X1−L, the total
utility of Pb is less than the utility of X1 for P1. P1 obtains at least µ1(X1), thus
P1 does not envy Pb.

This protocol cannot be used for mixed manna for several reasons. Though
P1 can cut the manna into three pieces X1, X2, and X3 whose utilities are the
same for P1, there can be a case when µ2(X1) > 0 and µ2(X2) < 0. In this case,
P2 might not be able to cut L from X1 so that µ2(X1 − L) = µ2(X2). Even if
µ2(X1) > 0, µ2(X2) > 0, and P2 can cut L from X1, there can be a case when
µ1(L) < 0 and X ′1 = X1 − L becomes the best piece for P1. If P2 or P3 selects
X ′1, P1 envies the player. A similar situation occurs at the assignment of L. Pa

cuts L into three pieces L1, L2, and L3 such that µa(L1) = µa(L2) = µa(L3).
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1 Begin
2 P1 cuts into three pieces so that the utilities of the pieces is the

same for P1.
3 Let X1, X2, X3 be the pieces where µ2(X1) ≥ µ2(X2) ≥ µ2(X3).
4 If µ2(X1) > µ2(X2) Then
5 P2 cuts L from X1 so that µ2(X ′1) = µ2(X2), where X ′1 = X1 − L.
6 P3 selects the largest (for P3) among X ′1, X2, and X3.
7 If X ′1 remains Then
8 P2 must select X ′1.
9 Let (Pa, Pb) be (P3, P2).

10 Else
11 P2 selects X2. /* the largest for P2 */
12 Let (Pa, Pb) be (P2, P3).
13 P1 obtains the remaining piece.
14 If L is not empty Then
15 Pa cuts L into three pieces so that Pa considers their utilities

are the same.
16 Pb, P1, and Pa selects one piece in this order.
17 End.

Fig. 1. Selfridge-Conway three-player envy-free cake-cutting protocol [18].

Pb selects the best piece, say L1. P1 then selects one of the remaining pieces,
say L2. In this situation, µ1(L1) > µ1(L) + µ1(L2) might occur if µ1(L3) is a
very large negative value. In this case, µ1(X1 − L) + µ1(L1) > µ1(X3) + µ1(L2)
holds, where X3 is the piece selected by P1 at Step 13. Thus, P1 envies Pb and
envy-freeness is not satisfied. Therefore, the Selfridge-Conway protocol cannot
be used for mixed manna.

Oskui’s three-player envy-free chore division protocol [18], shown in Fig. 2,
cannot be used for mixed manna for similar reasons. After P1 cuts the manna
into X1, X2, and X3 and X1 is the best piece for P2 and P3, P2 cannot cut the
manna so that µ2(X1) = µ2(X2 − E) = µ2(X3 − F ) is satisfied, if µ2(X1) > 0,
µ2(X2) < 0, and µ2(X3) < 0. Even if µ2(X1) < 0, µ2(X2) < 0, µ2(X3) < 0 and
P2 cuts E from X2 and F from X3 so that µ2(X1) = µ2(X2 −E) = µ2(X3 −F )
is satisfied, there can be a case when µ1(E) > 0, µ1(F ) > 0, and P1 envies P3

by the assignment at Step 11. Therefore, protocols for mixed manna must be
newly considered.

A naive envy-free assignment protocol for mixed manna is shown in [19].
First, divide the manna as follows:

– X123 such that any portion x ⊆ X123 satisfies µi(x) ≥ 0 for every player
Pi(i = 1, 2, 3).

– Xij(i, j = 1, 2, 3, i < j) such that any portion x ⊆ Xij satisfies µi(x) ≥ 0,
µj(x) ≥ 0, and µk(x) < 0 for the other player Pk.

– Xi(i = 1, 2, 3) such that any portion x ⊆ Xi satisfies µi(x) ≥ 0 and µj(x) < 0
for j 6= i.

– The remaining portion X0 such that any portion x ⊆ X0 satisfies µi(x) < 0
for i = 1, 2, 3.
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1 Begin
2 P1 cuts into three pieces X1, X2, X3 so that µ1(X1) = µ1(X2) = µ1(X3)

is satisfied.
3 If the best piece for P2 and P3 differs Then
4 P2 and P3 select the best piece. P1 obtains the remaining piece.
5 Else /* Let X1 be the best piece for P2 and P3. */
6 P2 cuts E from X2 and F from X3 so that

µ2(X1) = µ2(X2 − E) = µ2(X3 − F ) is satisfied.
7 If µ3(X2 − E) ≤ µ3(X1) and µ3(X3 − F ) ≤ µ3(X1) Then
8 P1, P3, and P2 select one piece in this order among X1, X2 − E, and

X3 − F.
9 Wlog P1 selects X2 − E. P3 selects X1. P2 obtains X3 − F.

10 P2 cuts E and F into three pieces E1, E2, E3 and F1, F2, F3 so that
µ2(E1) = µ2(E2) = µ2(E3) and µ2(F1) = µ2(F2) = µ2(F3) are
satisfied.

11 P3, P1, and P2 select one piece among Es and Fs in this order.
12 Else if µ3(X1) ≤ µ3(X2 − E) and µ3(X1) ≤ µ3(X3 − F ) Then
13 P3 cuts E′ ⊆ E and F ′ ⊆ F so that

µ3(X2 − E′) = µ3(X3 − F ′) = µ3(X1) are satisfied.
14 Execute Step 8-11 by changing the roles of P2 and P3 and renaming

(E′, F ′) to (E,F ).
15 Else /* µ3(X1) is between µ3(X2 − E) and µ3(X3 − F ). */
16 Wlog µ3(X2 − E) ≤ µ3(X1) ≤ µ3(X3 − F ) holds.
17 P3 cuts F ′ ⊆ F so that µ3(X3 − F ′) = µ3(X1) is satisfied.
18 P1 selects the best piece between X2 − E and X3 − F ′.
19 If P1 selects X2 − E Then
20 P2 obtains X1. P3 obtains X3 − F ′.
21 P3 cuts E and F ′ into three pieces E1, E2, E3 and F ′1, F

′
2, F

′
3 so

that µ3(E1) = µ3(E2) = µ3(E3) and µ3(F ′1) = µ3(F ′2) = µ3(F ′3) are
satisfied.

22 P2, P1, and P3 select one piece among Es and F ′s in this order.
23 Else /* P1 selects X3 − F ′. */
24 P2 obtains X2 − E. P3 obtains X1.
25 P2 cuts E and F ′ into three pieces E1, E2, E3 and F ′1, F

′
2, F

′
3 so

that µ2(E1) = µ2(E2) = µ2(E3) and µ2(F ′1) = µ2(F ′2) = µ2(F ′3) are
satisfied.

26 P3, P1, and P2 select one piece among Es and F ′s in this order.
27 End

Fig. 2. Oskui’s three-player envy-free chore division protocol [18].
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Then, the Selfridge-Conway protocol is executed among all players for X123.
Divide-and-choose is executed to Xij between Pi and Pj . Xi is given to Pi. Last,
three-player envy-free chore division protocol [18] is executed for X0. Similar
procedures can be considered for any number of players. Though this procedure
achieves an envy-free assignment, the procedure to initially divide the manna is
complicated. The mixed manna must be divided into the above eight pieces. Note
that each of the eight pieces might not be connected. For example, disconnected
multiple portions might satisfy µi(x) ≥ 0 for all players, thus X123 might consist
of multiple portions. Thus, the number of cuts to obtain the above eight pieces
might be more than eight. When Pi(i = 1, 2, 3) needs to cut the manna ci times
to divide into non-negative regions and negative regions for Pi, the manna needs
to be cut c1 + c2 + c3 times in the worst case. This paper considers reducing the
procedure of the initial division. The protocol in [15] is not discrete since the
protocol uses a moving-knife procedure. Thus this paper proposes a new discrete
protocol that does not use a moving-knife procedure.

4 A new protocol for mixed manna

This section shows a new three-player envy-free division protocol for mixed
manna in which the number of the initial division is reduced. Initially, cut the
manna as follows: X+ such that any portion x ⊆ X+ satisfies µ1(x) ≥ 0. X−

such that any portion x ⊆ X− satisfies µ1(x) < 0. X+(X−) is the portion with
non-negative (negative) utility for P1. The manna must be cut c1 times. Note
that by a renaming of the players, c1 can be selected as mini ci. Thus, the num-
ber of cuts necessary for the initial division is reduced compared to the naive
protocol in [19]. X+(X−) might consist of multiple disconnected pieces. In this
case, the disconnected pieces are collected to make one piece. X+ and X− might
contain both positive and negative portions for the other players.

The assignment of X+ uses the protocol in [15]. The protocol is shown in Fig.
3, in which the Selfridge-Conway protocol is modified. Initially, P1 cuts X+ into
three pieces. If both of P2 and P3 think at most one piece has a non-negative
utility, an envy-free assignment is easily obtained. If P2 or P3 thinks that at
least two pieces have a non-negative utility, the Selfridge-Conway protocol can
be executed because P1 thinks any portion of X+ has a non-negative utility.

Theorem 1. [15] The assignment result of X+ by the protocol in Fig. 3 is
envy-free.

Proof. First, consider the case when both of P2 and P3 consider that at most one
piece among X+

1 , X+
2 , and X+

3 has a non-negative utility. Consider the subcase
when both of P2 and P3 think the same piece, say X+

1 , has a non-negative utility.
P2 and P3 execute Divide-and-choose on X+

1 . Let P2 and P3 obtain X+
12 and X+

13,
respectively. Since X+

1 = X+
12 ∪X

+
13 and any portion of X+

1 has a non-negative
utility for P1, µ1(X+

12) ≤ µ1(X+
1 ) = µ1(X+

2 ) and µ1(X+
13) ≤ µ1(X+

1 ) = µ1(X+
2 )

hold. Since P1 obtains X+
2 and X+

3 , P1 does not envy P2 or P3. P2 and P3 do
not envy each other because of the envy-freeness of Divide-and-choose. P2 does
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1 Begin
2 P1 cuts into three pieces X+

1 , X
+
2 , and X+

3 so that
µ1(X+

1 ) = µ1(X+
2 ) = µ1(X+

3 ).
3 If P2 and P3 consider at most one piece has a non-negative utility

Then
4 If P2 and P3 consider the same piece (say, X+

1 ) has a non-negative
utility Then

5 P2 and P3 execute Divide-and-choose on X+
1 .

6 P1 obtains X+
2 and X+

3 .
7 Else
8 Each of P2 and P3 obtains at most one piece with a non-negative

utility.
9 P1 obtains the remaining piece(s).

10 Else
11 Let P2 be a player who considers two pieces have some non-negative

utility.
12 Rename the pieces so that µ2(X+

1 ) ≥ µ2(X+
2 ) ≥ µ2(X+

3 ).
13 Execute the Selfridge-Conway protocol from Step 4 with the three

pieces.
14 End.

Fig. 3. Three-player envy-free protocol for X+ [15].

not envy P1, since µ2(X+
2 ) < 0 and µ2(X+

3 ) < 0 hold. Similarly, P3 does not
envy P1.

Next, consider the subcase when no piece has a non-negative utility for both
of P2 and P3. In this case, P2 and P3 can obtain at most one piece whose utility
is not negative for the player. P1 obtains the remaining pieces, which have a
negative utility for both of P2 and P3. Thus, every player does not envy the
other players.

Next, consider the case when one player, say P2, thinks two pieces have a
non-negative utility. In this case, the Selfridge-Conway protocol can be executed.
The reason is as follows. P2 can cut L from X+

1 if µ2(X+
1 ) > µ2(X+

2 ) since both

of these utilities are non-negative. Each player can select one piece among X
′+
1 ,

X+
2 , and X+

3 . The assignment result is envy-free, since P3 selects first, there
are two equal utility pieces for P2, and P1 can obtain one full-size piece (Note

that any portion of X+ has non-negative utility for P1, thus µ1(X
′+
1 ) ≤ µ1(X+

1 )
holds). An envy-free assignment of L can also be realized. Even if the utility is
positive or negative, Pa can cut L into three pieces with the same utility. Pa

does not envy any other players since the three pieces have the same utility. Pb

does not envy any other players since Pb first selects a piece. P1 does not envy
Pb since Pb does not obtain 1/3 of X+ (Note again P1 thinks any portion of X+

has a non-negative utility). P1 does not envy Pa since P1 selects a piece before
Pa. ut

Next, X− needs to be assigned. The protocol for X− in [15] is not a discrete
protocol. This paper shows a new discrete protocol. We modify the three-player



8 Y. Okano and Y. Manabe

envy-free chore division protocol shown in Fig. 2. The detailed protocol is shown
in Fig. 4. The main differences between Oskui’s protocol are these three points:

1. any portion x ⊆ X− has a negative utility for P1 by the definition.
2. At Step 5, when the best piece (X−1 ) is the same for P2 and P3, both players

must have a negative utility for X−1 .
3. At Step 13, when P2 cuts E from X−2 and F from X−3 , E and F must be

selected so that any portion of E ∪ F has a negative utility for P2.

The reason for the necessity of the conditions is as follows: (1) P1 must not
envy for the assignment at Step 7, Step 10, Step 18, Step 29, and Step 33. The
detail is shown in the proof. (2) At step 13, P2 must be able to cut E from X−2
and F from X−3 so that µ2(X−1 ) = µ2(X−2 − E) = µ2(X−3 − F ), µ2(X−1 ) < 0,
µ2(X−2 ) < 0, and µ2(X−3 ) < 0 are satisfied. For example, if µ2(X−1 ) > 0 and
µ2(X−2 ) < 0, cutting E might not be able to be executed. (3) If E or F has a
portion whose utility is positive for P2, when P3 cuts E′ and F ′ at Step 20, the
new X−2 −E′ or X−3 − F ′ might become the best piece for P2 and an envy-free
assignment cannot be obtained at Step 15.

Theorem 2. The assignment result of X− by the protocol in Fig. 4 is envy-free.

Proof. In the protocol, P1 cuts X− into three pieces X−1 , X−2 , and X−3 so that
µ1(X−1 ) = µ2(X−2 ) = µ2(X−3 ) < 0 is satisfied. First, P2 and P3 chooses the best
piece. If the best pieces differ, an envy-free assignment is achieved when P2 and
P3 selects its best piece and P1 obtains the remaining piece. Note that even if P2

or P3 has more than one best piece, an envy-free assignment exists. For example,
if P2 has more than one best piece, P3, P2, and P1 selects one piece in this order.
After P3 selects one piece, there is at least one remaining piece whose utility is
the best for P2. Thus, an envy-free assignment can be achieved.

Therefore, the remaining case to consider is P2 and P3 have the same best
piece, say X−1 . We assume that µ2(X−1 ) < 0 and µ3(X−1 ) < 0 are satisfied.
Otherwise, X−1 can be assigned to the players who have a non-negative utility
by the Steps 6-11. If µ2(X−1 ) ≥ 0 and µ3(X−1 ) ≥ 0, X−1 is divided between P2

and P3 using Divide-and-choose. If one of P2 or P3 has a non-negative utility to
X−1 , X−1 is given to the player without envy. Then, the procedure is executed
again for the remaining pieces.

Thus, we assume that µ2(X−1 ) < 0 and µ3(X−1 ) < 0. Since X−1 is the best
piece for P2 and P3, µ2(X−2 ) ≤ µ2(X−1 ) < 0, µ2(X−3 ) ≤ µ2(X−1 ) < 0, µ3(X−2 ) ≤
µ3(X−1 ) < 0, and µ3(X−3 ) ≤ µ3(X−1 ) < 0 are satisfied. Note that X− might have
some portions whose utility is positive for P2 and/or P3. P2 cuts E from X−2 and
F from X−3 so that µ2(X−1 ) = µ2(X−2 − E) = µ2(X−3 − F ) with the condition
that any portion x ⊆ E ∪ F satisfies µ2(x) < 0. P2 can execute this operation
because µ2(X−2 ) ≤ µ2(X−1 ) < 0 and µ2(X−3 ) ≤ µ2(X−1 ) < 0. Note that E and
F might not be a connected component. In that case, connect these pieces and
treat E and F as a single piece. As the original Oskui’s protocol, we consider
the following three cases.

(Case 1) µ3(X−2 − E) ≤ µ3(X−1 ) and µ3(X−3 − F ) ≤ µ3(X−1 ).
In this case, P1, P3, and P2 selects one piece in this order among X−1 , X−2 −E,
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1 Begin
2 P1 cuts X− into three pieces X−1 , X

−
2 , and X−3 so that

µ1(X−1 ) = µ2(X−2 ) = µ2(X−3 ) is satisfied.
3 If the best piece for P2 and P3 differs Then
4 P2 and P3 selects the best piece. P1 obtains the remaining piece.
5 Else /* Let X−1 be the best piece for P2 and P3. */
6 If µ2(X−1 ) ≥ 0 and µ3(X−1 ) ≥ 0 Then
7 Execute Divide-and-choose on X−1 between P2 and P3.
8 Let X− = X−2 ∪X

−
3 and goto 2:

9 Else if µ2(X−1 ) ≥ 0 or µ3(X−1 ) ≥ 0 Then
10 Assign X−1 to the player who thinks µ(X−1 ) ≥ 0.
11 Let X− = X−2 ∪X

−
3 and goto 2:

12 Else /* µ2(X−1 ) < 0 and µ3(X−1 ) < 0. */
13 P2 cuts E from X−2 and F from X−3 so that

µ2(X−1 ) = µ2(X−2 − E) = µ2(X−3 − F ) is satisfied with the
condition that any portion x ⊂ E ∪ F satisfies µ2(x) < 0.

14 If µ3(X−2 − E) ≤ µ3(X−1 ) and µ3(X−3 − F ) ≤ µ3(X−1 ) Then
15 P1, P3, and P2 select one piece in this order among X−1 , X

−
2 − E,

and X−3 − F.
16 Wlog P1 selects X−2 − E. P3 selects X−1 . P2 obtains X−3 − F.
17 P2 cuts E and F into three pieces E1, E2, E3 and F1, F2, F3 so

that µ2(E1) = µ2(E2) = µ2(E3) and µ2(F1) = µ2(F2) = µ2(F3) are
satisfied.

18 P3, P1, and P2 select one piece among Es and Fs in this order.
19 Else if µ3(X−1 ) ≤ µ3(X−2 − E) and µ3(X−1 ) ≤ µ3(X−3 − F ) Then
20 P3 cuts E′ ⊆ E and F ′ ⊆ F so that

µ3(X−2 − E
′) = µ3(X−3 − F

′) = µ3(X−1 ) are satisfied.
21 Execute Step 15-18 by changing the roles of P2 and P3 and

renaming (E′, F ′) to (E,F ).
22 Else /* µ3(X−1 ) is between µ3(X−2 − E) and µ3(X−3 − F ). */
23 Wlog µ3(X−2 − E) ≤ µ3(X−1 ) ≤ µ3(X−3 − F ) holds.
24 P3 cuts F ′ ⊆ F so that µ3(X−3 − F

′) = µ3(X−1 ) is satisfied.
25 P1 selects the best piece between X−2 − E and X−3 − F

′.
26 If P1 selects X−2 − E Then
27 P3 obtains X−3 − F

′. P2 obtains X−1 .
28 P3 cuts E and F ′ into three pieces E1, E2, E3 and F ′1, F

′
2, F

′
3 so

that µ3(E1) = µ3(E2) = µ3(E3) and µ3(F ′1) = µ3(F ′2) = µ3(F ′3)
are satisfied.

29 P2, P1, and P3 select one piece among Es and F ′s in this order
30 Else /* P1 selects X−3 − F

′. */
31 P2 obtains X−2 − E. P3 obtains X−1 .
32 P2 cuts E and F ′ into three pieces E1, E2, E3 and F ′1, F

′
2, F

′
3 so

that µ2(E1) = µ2(E2) = µ2(E3) and µ2(F ′1) = µ2(F ′2) = µ2(F ′3)
are satisfied.

33 P3, P1, and P2 select one piece among Es and F ′s in this order
34 End.

Fig. 4. Three-player envy-free division protocol for X−.
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and X−3 −F . P1 never selects X−1 since every portion of X−2 ∪X
−
3 has a negative

utility for P1. Without loss of generality, suppose that P1 selects X−2 − E. P3

selects X−1 since it is the best piece for P3. Thus P2 obtains X−3 − F . This
assignment is envy-free. P1 does not envy since P1 selects first. P2 does not envy
since P2 thinks the three pieces have the same utility.

Last, E and F need to be assigned. P2 cuts E and F into three pieces E1, E2,
E3 and F1, F2, F3 so that µ2(E1) = µ2(E2) = µ2(E3) and µ2(F1) = µ2(F2) =
µ2(F3) are satisfied. P3, P1 and P2 select one piece among Es and F s in this
order. P3 does not envy the other players since P3 selects first. P2 does not
envy the other players since P2 thinks the utilities of three pieces are the same.
P1 does not envy P2 since P1 selects earlier than P2. The reason why P1 does
not envy P3 is as follows: µ1(E) ≤ µ1(F ) is satisfied since P1 selects X−2 − E.
Thus, by the selection of a piece of E and F , P1 obtains even in the worst case
1/2(µ1(E)+µ1(F )) ≥ µ1(E), since every portion of X− has a negative utility for
P1. Thus, P1 obtains in the worst case µ1(X−2 −E)+µ1(E) = µ1(X−2 ) = µ1(X−1 ).
Therefore, P1 does not envy P3 who obtains X−1 and some pieces of E and F .
Note again the utilities of any portion of E and F are negative for P1.

(Case 2) µ3(X−1 ) ≤ µ3(X−2 − E) and µ3(X−1 ) ≤ µ3(X−3 − F ).
P3 cuts E′ ⊆ E and F ′ ⊆ F that satisfy µ3(X−2 − E′) = µ3(X−1 ) and µ3(X−3 −
F ′) = µ3(X−1 ). Such a cut is possible since µ3(X−2 ) ≤ µ3(X−1 ) < 0 and
µ3(X−2 ) ≤ µ3(X−1 ) < 0 are satisfied. Since any portion of E ∪ F has a neg-
ative utility for P2, µ2(X−1 ) ≥ µ2(X−2 − E′) and µ2(X−1 ) ≥ µ2(X−3 − F ′) are
satisfied. Now, rename E′ to E and F ′ to F . Then, the condition of (Case 1)
is satisfied by P2. Thus, by changing the roles of P2 and P3, the procedure of
(Case 1) can be executed and an envy-free assignment can be obtained.

(Case 3) µ3(X−1 ) is between µ3(X−2 − E) and µ3(X−3 − F ).
Without loss of generality, suppose that µ3(X−2 −E) ≤ µ3(X−1 ) ≤ µ3(X−3 − F )
holds. In this case, P3 cuts F ′ ⊆ F that satisfies µ3(X−3 − F ′) = µ3(X−1 ). This
operation is possible for P3 since µ3(X−3 ) ≤ µ3(X−1 ) < 0 is satisfied. P1 selects
the best piece between X−2 −E and X−3 −F ′. Note that X−1 cannot be the best
piece for P1 since µ1(X−1 ) = µ1(X−2 ) = µ1(X−3 ).

(Case 3-1) P1 selects X−2 − E.
In this subcase, P3 obtains X−3 − F ′. P2 obtains X−1 . P1 does not envy the
other players since P1 selects first. P3 does not envy the other players since
µ3(X−3 − F ′) = µ3(X−1 ) ≥ µ3(X−2 − E) holds. P2 does not envy the other
players since µ2(X−1 ) = µ2(X−2 − E) ≥ µ2(X−3 − F ′) is satisfied.

Last, E and F ′ need to be assigned. P3 cuts E and F ′ into three pieces
E1, E2, E3 and F ′1, F ′2, F ′3 so that µ3(E1) = µ3(E2) = µ3(E3) and µ3(F ′1) =
µ3(F ′2) = µ3(F ′3) are satisfied. P2, P1, and P3 select one piece among Es and F ′s
in this order.

Envy-freeness for P3 and P2 are the same as the reason of (Case 1). The
reason why P1 does not envy P2 is as follows: µ1(E) ≤ µ1(F ′) is satisfied since
P1 selects X−2 − E. Thus, by the selection of a piece of E and F ′, P1 obtains
even in the worst case 1/2(µ1(E) + µ1(F ′)) ≥ µ1(E). Thus, P1 obtains in the
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worst case µ1(X−2 − E) + µ1(E) = µ1(X−2 ) = µ1(X−1 ). Therefore, P1 does not
envy P2 who obtains X−1 and some pieces of E and F ′.

(Case 3-2) P1 selects X−3 − F ′
In this subcase, P2 obtains X−2 − E. P3 obtains X−1 . P1 does not envy the
other players since P1 selects first. P3 does not envy to the other players since
µ3(X−3 −F ′) = µ3(X−1 ) ≥ µ3(X−2 −E) holds. P2 does not envy the other players
since µ2(X−1 ) = µ2(X−2 − E) ≥ µ2(X−3 − F ′) is satisfied.

Last, E and F ′ need to be assigned. P2 cuts E and F ′ into three pieces
E1, E2, E3 and F ′1, F ′2, F ′3 so that µ2(E1) = µ2(E2) = µ2(E3) and µ2(F ′1) =
µ2(F ′2) = µ2(F ′3) are satisfied. P3, P1 and P2 select one piece among Es and F ′s
in this order. Envy-freeness for P3 and P2 are the same as the reason of (Case 1).
The reason why P1 does not envy P3 is as follows: µ1(E) ≥ µ1(F ′) is satisfied
since P1 selects X−3 − F ′. Thus, by the selection of a piece of E and F ′, P1

obtains even in the worst case 1/2(µ1(E) + µ1(F ′)) ≥ µ1(F ′). Thus, P1 obtains
in the worst case µ1(X−3 − F ′) + µ1(F ′) = µ1(X−3 ) = µ1(X−1 ). Therefore, P1

does not envy P3 who obtains X−1 and some pieces of E and F ′. ut

5 Conclusion

This paper showed a three-player discrete envy-free division protocol for mixed
manna. This protocol reduces the initial division by the naive protocol. Note
that the initial division still needs mini ci cuts, thus elimination of the initial
division is the most important open problem. Also, each player’s role in the
protocol differs among the players and meta-envy [13] exists. A meta-envy-free
protocol is necessary for ideal fairness.
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