
Anonymous return route information
for onion based mix-nets

Yoshifumi Manabe
NTT Communication Science Laboratories

NTT Corporation
Atsugi, Kanagawa 239-0198 Japan

manabe.yoshifumi@lab.ntt.co.jp

Tatsuaki Okamoto
NTT Information Sharing Platform Laboratories

NTT Corporation
Musashino, Tokyo 180-8585 Japan

okamoto.tatsuaki@lab.ntt.co.jp

ABSTRACT
This paper proposes a return route information encryption
scheme for onion-based e-mail systems and mix-nets. Our
scheme has the following two properties. (1) It allows any
node on the message route to send reply messages to the
sender of the message. This property is necessary for send-
ing error replies. (2) It allows the replying node to send mul-
tiple reply messages from one piece of return route informa-
tion. This property is necessary when responding with large
amounts of data using multiple messages. In order to con-
struct a return route information scheme, we must consider
a new type of attack, namely the replace attack. A mali-
cious node obtains information about the route by replacing
secret information that only the node can read. This paper
describes the new type of attack and shows that previous
schemes are vulnerable to it. Our scheme prevents replace
attacks. In addition, we show that by slightly modifying our
scheme malicious nodes cannot distinguish whether a mes-
sage is a forward message or a reply message, thus improving
the security of the routing scheme.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption�Public key cryptosystems;
C.2.2 [Computer-Communication Networks]: Network Pro-
tocols�Routing Protocols

General Terms
Security, Theory

Keywords
anonymous communication, route information, return ad-
dress, mix-nets

1. INTRODUCTION
E-mail systems are widely used in business and daily life.

The names of the sender and receiver of each e-mail are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AlPACa 2008September 22, 2008, Istanbul, Turkey
Copyright 2008 ACM ISBN 978-1-60558-241-2 ...$5.00.

provided in plain text in the e-mail header. Thus, every
node in the network can obtain the names of the sender and
the receiver when an e-mail is relayed (This paper does not
discuss spam e-mails that forge the name of the sender).
We sometimes want to send e-mail anonymously, for ex-

ample, when whistle-blowing. If we are to achieve anonymity,
no node in the network should be able to obtain information
about the sender or receiver of an e-mail, although the nodes
must be able to obtain the route information needed to relay
the e-mail. Onion-based mix-nets[1][3][8][10][11][12][13][15][19]
is a mechanism for sending e-mails anonymously, which is
one of the techniques of anonymous communication [6]. In
onion-based mix-net schemes, route information is appended
to each message, thus multiple messages with the same pair
of the sender and the receiver might be sent by di�erent
routes. Note that as an alternative mechanism, many works,
for example, Onion-routing[9] and Tor [7], have been carried
out to create a virtual circuit that can be used for bidirec-
tional anonymous communication[6].
The problem of sending reply messages using onion-based

mix-net has not been carefully discussed. Most of previ-
ous works considered sending one reply message from the
destination node. Two important properties, multiple reply
senders and multiple reply messages, must be considered.
Let us consider the �rst problem, the sender of the reply

messages. There are two cases where a reply is sent. The
�rst is where the reply is sent by the receiver. This type of
reply is necessary, for example, when responding to whistle-
blowers. The second case involves sending error messages
from the nodes on the route. This type of reply message is
necessary when the address used by the sender is incorrect
or the node/link for relaying the message is down. Without
an error reply mechanism, the sender cannot know that the
message was not sent correctly. This type of error message
is necessary even if the network is robust and errors rarely
occur. Since it is not realistic for the entire e-mail system to
support onion-based e-mail routing, the easiest implementa-
tion for the current Internet may be a mix-net operated by a
number of volunteer servers. Messages between servers are
sent via the Internet using encryption between the servers.
A message sender randomly selects a sequence of servers and
appends the sequence before the �nal destination. Since the
servers are provided voluntarily, some servers might sud-
denly stop providing the service. Thus, such mix-nets need
a mechanism for sending error replies to inform the sender
that a server is not operating.
The second problem is sending multiple reply messages

from one replying node. Every onion-based mix-net scheme

assumes that the size of the message content is �xed, in order
to prevent malicious nodes obtaining the route of a message
from its size. Thus the reply needs to be sent by multiple
messages if its size is large (e.g. image data). However,
many schemes such as those in [1][2], the replying node can-
not randomize the obtained return route information, thus
relaying nodes can detect that the same route information is
used multiple times. (Note that in [1], the relaying nodes dis-
card messages that have same route information to prevent
a replay attack. Thus it is impossible to send multiple reply
messages with the same route information). Some mech-
anisms that allows multiple replies were proposed [4][14].
Our scheme allows any relaying node to send multiple reply
messages with the same route information.
For the return route information a malicious node can ex-

ecute a new type of attack, the replace attack. A malicious
node obtains information about the route by replacing se-
cret information that only the node can read. Our scheme
prevents the replace attack.
In addition, with a slight modi�cation, the scheme de-

scribed in this paper can become symmetric with respect to
forward and reply messages with the result that malicious
nodes cannot distinguish these messages.

2. DEFINITION OF PROBLEM
The de�nition in [1] does not consider the ability to send

reply messages from any node on the route, thus we need to
rede�ne the problem.
The network topology is represented by an undirected

graph G = (V, E) where V is the set of nodes and E is the
set of edges. Each node v ∈ V acts as a sender, a receiver,
and a message relayer. Edge e = (vi, vj) is a bidirectional
communication channel between vi and vj . G is public in-
formation. Note that G is a complete graph when any node
can directly send messages to any other node. Each node vi

encodes a special character ⊥i (meaning vi is the destina-
tion of the message) and edges connected to vi, to a message
space Mi. In the rest of the paper, when an edge e appears
in encrypted route information, e is not a pair of nodes but
an encoded message.
A message M consists of message content m and route

header h. When a node S sends message content m to a node
R, S �rst obtains a path on G, p = v0(= S), e1, v1, . . . , vn−1,
en, vn(= R) from S to R, where ei = (vi−1, vi) ∈ E(1 ≤ i ≤
n). Let p(S, R) denote a path from S to R. Throughout this
paper, we use this path for explanation. There are two ways
to obtain a route header for a certain path. The �rst consists
of S selecting a path p(S, R) on G from S to R and encrypt-
ing it. The second consists of obtaining a route header while
relaying or receiving a message. We call the former type of
route information forward route information and the latter
type of route information return route information. A mes-
sage sent using forward (return) route information is called
as a forward (return) message.
When node v receives message M and relays it to the next

edge, it obtains new route header h′ from v to M 's original
sender, that is, h′ is an encryption of p(v, S). In addition,
when R receives a message M whose destination is R, R
obtains new route header h′′ from R to M 's original sender,
that is, h′′ is an encryption of p(R, S). We denote h(M) as
the header of message M and pa(M) as the path represented
by h(M).
Each node generates a pair consisting of a public key and

a private key. Let A be an adversary. A can corrupt any
node and modify the incoming messages at the corrupted
nodes. Assume that A never refuses to relay a message. It
never discards messages or rewrites the headers that prevent
messages being sent to the correct receiver. Note that this
assumption does not exclude a message denial attack. This
paper discusses the adversary's action before the day of a
message denial attack. Before that day, the adversary does
not want to be detected as an adversary, thus it is honest
about relaying messages but it tries to collect route informa-
tion from the relaying messages. On the attack day, using
the collected route information, the adversary stops relaying
messages whose destination is speci�ed nodes (or executes
some other type of attack). Without collecting such infor-
mation, the adversary can only execute a trivial message
denial attack, for example, it can only stop sending all mes-
sages or randomly selected messages.
Adversary might study the timings of messages moving

through the system to �nd correlations. To prevent tim-
ing analysis, we assume that there is a su�cient volume of
background message tra�c on every edge by employing a
method such as those described in [16][17][18].
The anonymity of route information demands that no

message be linked to any other message by anyone. We de-
scribe an unlinkability experiment, ExpA, as follows. There
is a route information oracle O. When O receives a route
header from A, O decrypts it and responds to A.
Experiment ExpA
(1) A �rst selects any path p(S, R) and forces S to send a

message M to R by p(S, R). By sending M , every node vi on
p(S, R) obtains a return route header hi for path p(vi, S). A
can force any (non-corrupted or corrupted) node vi to send a
message using hi. In addition, A can ask route information
oracle O to decrypt the route header h of any message on
any edge. A can execute this procedure as many times as A
wants.
(2) A outputs either (2-1) a non-trivial relation Rel be-

tween two messages or (2-2) a non-trivial relation Rel′ be-
tween a message and a node.
(3)A then executes step (1) again except for the limitation

that A cannot use oracle O.
(4) A outputs two messages M1 and M2 or a pair consist-

ing of message M1 and a node v according to whether Rel
or Rel′ is output in (2). These messages are those that A
observes during step (3).
The advantage of A, Advul(A), is de�ned as

Prob[Rel(M1, M2)] (or Prob[Rel′(M1, v)]).

Adversary A (t, ϵ)-breaks the unlinkability problem if it
runs in time at most t and Advul(A) is at least ϵ. The
route information system is (t, ϵ)-secure if no adversary A
(t, ϵ)-breaks the unlinkability problem.
The trivial relation between two messages, TRel(M1, M2)

is as follows. Mi(i = 1, 2) are observed at di�erent edges
ei(i = 1, 2), M1's route pa(M1) contains e1 and e2, and all
nodes on pa(M1) between e1 and e2 are corrupted by A. It
is easy to detect whether M1 and M2 are the same message
from the above corrupt condition.
Similarly, the trivial relation between a message and a

node, TRel′(M, v) is as follows. M is observed at edge e,
M 's route pa(M) contains v, and all nodes on pa(M) be-
tween e and v are corrupted by A.
We consider the following non-trivial relations when not

every node on the path is corrupted.
(1) M1 observed at e1 and M2 observed at e2 are the same

message.
(2) M1 and M2 use the same route information.
(3) M2 is a reply message to M1.
(4) pa(M1) contains vi.
This paper provides some assumptions to solve the prob-

lem.

Assumption 1. At step (4) of ExpA, A must not output
message M whose sender or receiver is corrupted.

Assumption 2. A must not corrupt a pair of adjacent
nodes.

The reason of these assumptions are shown later. Finding
a way to eliminate these assumptions requires further study.

3. PREVIOUS RESULTS
A simple implementation for sending reply messages is as

follows. Each relaying node records a tuple (M0, M1, e1)
consisting of an incoming message M0, an outgoing mes-
sage M1, and the edge e1 from which M0 arrived in its local
log. When a node wants to send reply message M ′ to mes-
sage Mk, the initiator of M ′ sends the pair (M ′, Mk) to
the edge from which Mk arrived. The node that receives
reply message (M ′, Mk) searches the log and �nds a tuple
(Mk−1, Mk, ek), then it relays (M ′, Mk−1) to ek. By repeat-
ing this procedure, M ′ will arrive at the original sender of
M . This mechanism is not secure because a malicious node
can obtain the relationship between a message and its reply.
Three solutions have already been reported that enable

the receiver node to send a reply message. Chaum [2] pro-
posed a return address as follows (we omit the message con-
tent part):

Kn(en, Kn−1(en−1, . . . , K1(e1, K0(⊥0)) · · ·), where Ki is
the public key of vi.

vi(i = n, n− 1, . . . , 1) decrypts the information encrypted
by Ki and obtains ei. For vi to obtain ei, this route infor-
mation must be decrypted by vn, vn−1, . . . , vi+1 in advance.
When vi needs to send an error message because vi+1 (or
ei+1) is down, vi cannot obtain ei because the route infor-
mation is encrypted by the key of vi+1. In order to use this
type of return route information, v0 needs to prepare one
piece of return route information originating at each inter-
mediate node,

Kn(en, Kn−1(en−1, . . . , K1(e1, K0(⊥0)) · · ·)
Kn−1(en−1, Kn−2(en−2, . . . , K1(e1, K0(⊥0)) · · ·)
Kn−2(en−2, Kn−3(en−3, . . . , K1(e1, K0(⊥0)) · · ·)

and so on. Thus the total size of the return route informa-
tion is O(n2). We need a mechanism that does not increase
the size of the route information.
Camenisch et al. [1] proposed an onion-based message

routing scheme and its reply mechanism. However, in their
return route information scheme, the procedure at each node
is deterministic, that is, when a message arrived at v the out-
put from v is uniquely de�ned. Replay attack is avoided by
destroying messages that use the same header twice. This
means that the receiver node cannot send multiple reply
messages to a given message. In addition, their scheme needs
a non-standard assumption on the pseudorandom permuta-
tions they use.
Toriyama et al. [19] proposed a mechanism for obtaining

return route information while messages are forwarded by

onion-based message routing. vj adds return edge informa-
tion ej to message M while sending M . The following re-
place attack can be performed on their scheme. A malicious
node vj adds e′j instead of ej . vj can detect that message
M ′ is a reply to M by obtaining edge e′j instead of ej (and
continues sending messages correctly by relaying this reply
message to ej). vj can thus obtain the relationship between
a message and its reply. To prevent the replay attack, the
return route information must be set by the original sender
S.

4. FORWARD ROUTE INFORMATION
First, we outline the ElGamal type route information ran-

domization mechanism described in [19], which is modi�ed
from that in [10], which is proved to be insecure in [5]. Our
scheme uses the following mechanism for the forward route
information.
The main idea is exactly the same as standard onion rout-

ing, namely that the route information that vj must use,
ej+1, is encrypted as Enc(pk1, Enc(pk2, . . . , Enc(pkj ,
ej+1) . . .)). Every node decrypts it by using its secret key
and vj obtains ej+1.
Let g be a generator of cyclic group G whose order is a

large prime. Node vj selects xj
R← Z∗

p and sets yj ← gxj .
The public key of vj is yj and the private key of vj is xj .
The basic ElGamal encryption scheme is as follows. For a

given plaintext (encoded edge information) ej+1, randomly

selects r
R← Z∗

p and the ciphertext (X, Y) is (gr, ej+1 · yr
j).

For a ciphertext (X, Y), obtain the plaintext by Y/Xxj .
The scheme in [19] modi�es the scheme such that encryp-
tion is performed by (X, Y) ← (gr, y

r·ej+1
j) and decryption

is performed by searching for the value ej+1 that satis�es
Y = Xxj ·ej+1 . Since in the route information scheme, the
set of edges (the message space) vj is connected to is a rela-
tively small �xed set, this type of encryption/decryption is
possible.
The main idea of [19] is as follows. The route information

that vj must obtain, ej+1, is encrypted at the sender node
as (gr, yr

1 ·yr
2 · . . . ·yr

j−1 ·y
r·ej+1
j). When v1 receives this infor-

mation, v1 partially decrypts it and obtains (gr, yr
2 ·. . .·yr

j−1 ·
y

r·ej+1
j). Then v2, v3. . . . decrypts it and when this message

comes to vj , the route information becomes (gr, y
r·ej+1
j) and

vj can obtain ej+1. To hide the relationship between incom-
ing messages and outgoing messages, this route information
is randomized at each node. The details are provided below.
(Initialization) Let us consider a case where a node S

sends a message m to a node R by the route p(S, R) de-
�ned above. From the public keys, S generates message
(β, α1, α2, . . . , αN , γ1, γ2, γ3, γ4) as follows.

S chooses r
R← Z∗

p and sets β ← gr,

αi ← (y1 · y2 · . . . · yi−1)
r · yei+1·r

i (1 ≤ i ≤ n − 1), and

αn ← (y1 · y2 · . . . · yn−1)
r · y⊥n+1·r

n .
⊥n+1 indicates that vn is the destination of the message,

that is, ⊥n+1 is a special value that di�ers from all the values
for edges connected to vn. αn+1, αn+2, . . . , αN are dummy
values to hide the length of the actual route.

γi(i = 1, 2, 3, 4) carries the message content m. S selects

r1, r2
R← Z∗

p and sets
γ1 ← m · (y1 · y2 · . . . · yn−1 · yn)r1 , γ2 ← gr1 ,
γ3 ← (y1 · y2 · . . . · yn−1 · yn)r2 , and γ4 ← gr2 .

S permutes αi(1 ≤ i ≤ N) and sends the message to e1.

(Decryption) When a message (β, α1, . . . , αN , γ1, γ2, γ3, γ4)
arrives at node vj , it decrypts the route header and obtains
the next edge to relay this message. vj then re-encrypts all
the values and sends them to the next edge. The procedure
is shown below.

vj searches for αi(1 ≤ i ≤ N) that satis�es αi = βej+1·xj

for some ej+1 or αi = β⊥j+1·xj . Let αk be the element that
satis�es the above condition.
If the latter condition is satis�ed, vj is the destination of

this message. vj obtains the message content m by calcu-
lating γ1/γ2

xj .
If the former condition is satis�ed, ej+1 is the edge to

which vj must relay this message. vj decrypts every element
of the header αi(1 ≤ i ≤ N, i ̸= k) by calculating ᾱi ←
αi/βxj .

αk is no longer necessary, thus vj sets ᾱk as a random
dummy value.
For the elements γi(i = 1, 2, 3, 4) that carry the message

content, vj calculates
γ̄1 ← γ1/γ

xj

2 and γ̄3 ← γ3/γ
xj

4 .
(Re-randomization) To prevent a replay attack, every block

must be randomized at vj . Let (β, ᾱ1, ᾱ2, . . . , ᾱN , γ̄1, γ2, γ̄3, γ4)
be the message after the above decryption is performed. vj

selects r0, r1, r2
R← Z∗

p and calculates
eαi ← ᾱi

r0(1 ≤ i ≤ N),
eβ ← βr0 ,
eγ1 ← γ̄1 · γ̄3

r1 ,
eγ2 ← γ2 · γr1

4 ,
eγ3 ← γ̄3

r2 , and
eγ4 ← γr2

4 .

(eβ, fα1, fα2, . . . , fαN , eγ1, eγ2, eγ3, eγ4) is the new message.
(Permutation) After the above re-randomization, vj per-

mutes fα1, fα2, . . . , fαN at random.

In the scheme in [10], each edge value ei is stored in an
independent block, that is, ei is stored in (α0, β0, α1, β1),
where β0 ← gr0 , α0 ← ei+1 ·(y1 ·y2 ·. . .·yi−1 ·yi)

r0 , β1 ← gr1 ,
and α1 ← (y1 · y2 · . . . · yi−1 · yi)

r1 .
The decryption at vj is ᾱ0 ← α0/β

xj

0 .
An attack on this scheme is described in [5]. Since (α1, β1)

is an encryption of plaintext `1', the relaying node can add a
false route to the malicious node, ex, by executing β′

0 ← β1,

α′
0 ← exα1, β′

1 ← βr′
1 , and α′

1 ← αr′
1 .

The above attack cannot be applied to the scheme de-
scribed by Toriyama et al., because there is no encryption
of `1' in the route information. In their scheme, every block
uses the common value β. vj cannot replace αk with valid
route information because vj does not know r ∈ Z∗

p that
satis�es β = gr.
On the other hand, the message block is just the same as

that in [10], thus the following replay attack [5] is possible
if some node on the route and the receiver R are malicious.
Message m is stored in (γ1, γ2), where γ1 = m · yr0

i · yr0
i+1 ·

. . . · yr0
n and γ2 = gr0 for some r0. The malicious node vi

sends a new message with (γt
1, γ

t
2), which is a ciphertext of

mt. When receiver R obtains m and mt, it detects that
the route contains vi. Thus, this paper assumes that the
receiver of the message is not corrupted in Assumption 1.
Note that this scheme is not secure if A corrupts the

sender S and some node vj on the route. S uses a spe-
cial value e′j+1 instead of ej+1 in αj . When vj decrypts the
data and obtains the special value e′j+1, vj can detect that

this message was sent by S. vj can continue relaying this
message to ej+1 by hearing the next edge from S using some
method. Using the information, A can discard all messages
whose sender is not A. This type of attack cannot be pre-
vented in schemes those described in [1][2][19]. One way to
prevent this type of attack is for S to ask a trusted third
party to obtain the route information. However, this might
not be practical for all users to ask for the route information
from a trusted third party. Thus, Assumption 1 excludes the
case where the sender of a message helps to detect the route
information. Finding a way to eliminate this assumption
will require further study.

5. PROPOSED RETURN ROUTE
INFORMATION SCHEME

A natural implementation of the return route information
may be exactly the same as for the forward route information
in the previous section.
Let us consider a case where the return route information

(θ, δj) is encrypted so that vj can obtain ej , that is, (θ, δj) =
(gr, yr

1 · yr
2 · . . . · yr

j−1 · y
r·ej

j).
To decrypt this route information, each node executes

δ̄j ← δj/θxi . Thus δj becomes y
r·ej

j at vj and vj can obtain
return route information ej .
When this message goes beyond vj without replacing with

a dummy value, δj is decrypted using the secret keys xj+1,
xj+2 . . . that were not encrypted at all as δ̄j ← δj/θxi . Thus
δj becomes y

r·ej

j /(yr
j+1 · yr

j+2 · . . . · yr
j′) at vj′ .

When v′
j sends a reply message, this unnecessary decryp-

tion can be cancelled out by executing δ̄j ← δj · θxi while
relaying the reply at vi. Thus, when the reply message ar-
rives at vj , δj becomes y

r·ej

j again and vj can obtain ej .
Although this mechanism seems to work, we must consider
the replace attack described below.
In the above procedure, vj sees the same edge information

ej twice: once while relaying a forward message and once
while relaying its reply message. Thus the following replace
attack is possible. When vj ∈ A decrypts ej from δj while
relaying a forward message M , it replaces ej with a special

value e′j by calculating δ′j ← δj
e′j/ej . When vj receives a

reply message M ′, it can detect that M ′ is a reply message
for M if it obtains e′j . Therefore, the relationship between
these two messages can be detected.
The idea for preventing the replace attack is as follows.

When vj wants to send a reply message M ′ to the received
message M , it is unnecessary for vj to calculate the next
edge to send M ′. It should simply return M ′ to the edge M
arrived from. This mechanism does not require a log that
must be kept for a long time by intermediate nodes, because
each intermediate node can detect instantly whether or not
the next node or edge is down. At the destination node R,
the edge information needed to send a reply to message M
can be kept by R together with M .
On the other hand, when a reply message is relayed to vj

from some other node, it is necessary for vj to obtain the
next edge. Thus, return route information ej is unnecessary
until M is forwarded to vj+1, which is the next node on the
forward route. ej is encrypted using x1, x2, . . . , xj and xj+1

so that vj cannot decrypt ej when vj receives M from vj−1.
ej is encrypted as follows. (θ, δj) = (gr, yr

1 · yr
2 · . . . · yr

j−1 ·
y

r·(ej+1)

j · yr
j+1), where yr

j+1 is the extra term. At vj , this

route information becomes (θ, δj) = (gr, y
r·(ej+1)

j · yr
j+1) as

a result of the decryption at v1, v2, . . . vj−1. vj cannot ob-
tain ej from this route information because of the extra
term yr

j+1. Since vj cannot know that this is the return
route information for vj , vj executes δj/θxj , which is the
procedure for the other return route information. Then
this route information becomes (gr, y

r·ej

j · yr
j+1). When this

route information is sent to vj+1, vj+1 converts it by a spe-
cial extra decryption rule described later, to (gr, y

r·ej

j /yr
j+1),

which is the normal form of the return route information at
vj+1. When this route information is sent to vj+2, . . . and
then returned to vj+1, the return route information becomes
(gr, y

r·ej

j /yr
j+1) again. Then, vj+1 executes δj ·θxj+1 and the

route information becomes (gr, y
r·ej

j) and vj can obtain ej .
By employing this mechanism, vj sees ej just once and a
replace attack becomes impossible.
The above mechanism needs vj+1 to execute an extra de-

cryption for the block δj that encrypts ej . To inform vj+1 of
the necessity of an extra decryption, pairs of (αi+1, δi)(0 ≤
i ≤ n− 1) are made, where αi+1 is the encryption of ei+2 in
the forward route information. Since edge information ej+2

is obtained from αj+1 only at vj+1, it can be used to inform
vj+1 that it needs to execute an extra decryption to δj .
The following describes the proposed system in detail.

Consider the case when a node S sends a message m to
node R via p(S, R).
(Initialization) Note that the forward route information

β, α1, α2, . . . , αN , γ1, γ2, γ3, and γ4 are calculated in the same
way as in the previous section.
From the public keys, S generates the combined route in-

formation (β, θ, B0, B1, . . . , BN−1, γ1, γ2, γ3, γ4, λ1, λ2), where
Bi = (αi+1, δi)(0 ≤ i ≤ N − 1) as follows.

S chooses r
R← Z∗

p (note that the random numbers must
be di�erent from those for forward route information) and
sets θ ← gr,
δ0 ← y⊥0·r

0 · yr
1 , and

δi ← (y1 · y2 · . . . · yi−1)
r · y(ei+1)·r

i · yr
i+1(1 ≤ i ≤ n − 1).

Bn, Bn+1 . . . , BN−1 are dummy values.
λ1, λ2 are used to carry the message content of the reply.

S generates r′
R← Z∗

p and sets

λ1 ← yr′
0 , and

λ2 ← gr′
.

S permutes Bi(0 ≤ i ≤ N − 1) randomly. The message
M is (β, θ, B0, B1, . . . , BN−1, γ1, γ2, γ3, γ4, λ1, λ2). v0 sends
M to e1.
(Decryption) When a message arrives at node vj , vj searches

for a block Bi = (αi+1, δi)(0 ≤ i ≤ N − 1) that satis�es
αi+1 = βej+1·xj for some ej+1 or αi+1 = β⊥j+1·xj . Let
αk = (αk+1, δk) be the block that satis�es the above condi-
tion.
If the latter condition is satis�ed, vj is the destination of

this message, Then vj obtains the message content m by
calculating γ1/γ2

xj .
If the former condition is satis�ed, ej+1 is the edge to

which vj must relay this message.
If vj wants to send a reply message to S, the procedure

for initialization on return should be employed.
Otherwise, vj decrypts every block Bi = (αi+1, δi)(i ̸= k)

by calculating
¯αi+1 ← αi+1/βxj and

δ̄i ← δi/θxj .
vj calculates δ̄k ← δk/θ2·xj , which is the extra decryption.

αk+1 is no longer necessary, thus vj sets ¯αk+1 as a random
dummy value.
For the elements γi(i = 1, 2, 3, 4) and λi(i = 1, 2) that

carry the message content, vj calculates
γ̄1 ← γ1/γ

xj

2 ,
γ̄3 ← γ3/γ

xj

4 , and
λ̄1 ← λ1 · λ

xj

2 .
(Re-randomization) Let (β, θ, B̄0, B̄1, . . . , ¯BN−1,

γ̄1, γ2, γ̄3, γ4, λ̄1, λ2), where B̄i = (¯αi+1, δ̄i) is the message af-
ter the above decryption has been performed. vi re-randomizes
the message with the following procedure.

vj selects r0, r1, r2, r3, r4
R← Z∗

p and calculates
eαi ← ᾱi

r0(1 ≤ i ≤ N),
eβ ← βr0 ,
eδi ← δ̄i

r1(0 ≤ i ≤ N − 1),
eθ ← θr1 ,
eγ1 ← γ̄1 · γ̄3

r2 ,
eγ2 ← γ2 · γr2

4 ,
eγ3 ← γ̄3

r3 ,
eγ4 ← γr3

4 ,
fλ1 ← λ̄1

r4 , and
fλ2 ← λr4

2 .
The message after re-randomization is

(eβ, eθ, fB0, fB1, . . . , B̂N−1, eγ1, eγ2, eγ3, eγ4, fλ1, fλ2), where
fBi = (gαi+1, eδi)(0 ≤ i ≤ N − 1).
(Permutation) After the re-randomization, vj permutes

the blocks Bi(0 ≤ i ≤ N − 1) at random. After the permu-
tation, vj sends the message to ej+1.
(Initialization on return) When vj decides to send a reply

message, the forward route information is no longer used
thus it is discarded. The following procedure is executed to
send a reply message to S.

δk ← δk/θxj to decrypt the extra encryption.
Re-randomize the return route information by choosing

r
R← Z∗

p and setting
eδi ← δr

i (0 ≤ i ≤ N − 1) and
eθ ← θr.
In order to append the reply message content m′, vj exe-

cutes the following. vj chooses r0, r1
R← Z∗

p and calculates
fλ1 ← m′ · λr0

1 ,
fλ2 ← λr0

2 ,
fλ3 ← λr1

1 , and
fλ4 ← λr1

2 ,

Now the reply message is (eθ, eδ0, eδ1, . . . ,]δN−1, fλ1, fλ2, fλ3, fλ4)

vj permutes eδi(0 ≤ i ≤ N − 1) at random. vj sends
the reply message to ej , from which the relaying message
arrived.
When vj receives a reply message (θ, δ0, δ1, . . . , δN−1,

λ1, λ2, λ3, λ4), it executes the following procedure.
(Decryption on return) vj searches for an element δi(0 ≤

i ≤ N − 1) such that δi = θxj ·ej for some ej or δi = θxj ·⊥j .
Let δk be the element that satis�es the above condition.
If the latter condition is satis�ed, vj is the destination of

the reply message. vj then decrypts the message m′ by
λ1/λ

xj

2 .
If the former condition is satis�ed, ej is the edge to which

vj must relay this reply message. Then vj decrypts every
element by calculating
δ̄i ← δi · θxj .
For the message content, vj decrypts the elements by cal-

culating
λ̄1 ← λ1/λ

xj

2 , and
λ̄3 ← λ3/λ

xj

4 .
(Re-randomization on return) For the message

(θ, δ̄0, δ̄1, . . . , ¯δN−1, λ̄1, λ2, λ̄3, λ4) after the above decryption,
vj executes the following re-randomization.

vj selects r
R← Z∗

p and calculates
eδi ← δ̄i

r
(1 ≤ i ≤ N − 1), and

eθ ← θr.
vj then selects r0, r1

R← Z∗
p and re-randomize them by

fλ1 ← λ̄1 · λ̄3
r0 ,

fλ2 ← λ2 · λr0
4 ,

fλ3 ← λ̄3
r1 , and

fλ4 ← λr1
4 .

(eθ, eδ0, eδ1, . . . ,]δN−1, fλ1, fλ2, fλ3, fλ4) is the randomized mes-
sage.
(Permutation on return) After the re-randomization, vj

permutes eδi at random.

6. PROOF OF SECURITY
This section provides proof of the security of the proposed

scheme.
We recall the decisional Di�e-Hellman assumption on which

the security of our routing scheme is based.

De�nition 1. Let q be a large prime. Let G be a cyclic
group of order q and g be a generator of G. The decisional
Di�e-Hellman (DDH) problem is de�ned as follows.
De�ne D and R as follows:
D = {(g, gx, gy, gxy) ∈ G4|x, y ∈ Zq}
R = {(g, gx, gy, gz) ∈ G4|x, y, z ∈ Zq}
Adversary A outputs 0 or 1 on input (g, A, B, R) ∈ G4.

A's advantage AdvDDH(A) is de�ned as
AdvDDH(A) = |Prob[A(g, A, B, R) = 1|(g, A, B, R) ∈ D] −
Prob[A(g, A, B, R) = 1|(g, A, B, R) ∈ R]|.
Adversary A (t, ϵ)-breaks the DDH problem if A runs in

time at most t and AdvDDH(A) is at least ϵ. The (t, ϵ)-DDH
assumption holds if no adversary A (t, ϵ)-breaks the DDH
problem.

Theorem 1. The proposed route information scheme is
secure under the DDH assumption if no node is corrupted.

(Sketch of proof) Since A corrupts no node, it cannot
rewrite messages using private keys for some nodes. Assume
that there is an adversary A that can break unlinkability.
Using A we can obtain an adversary B that solves the DDH
problem. For a given instance (g, A, B, R) ∈ G4 of the DDH
problem, B randomly selects a node vk and sets B as the
public key of vk. B generates private key xj for vj(j ̸= k)
and sets yj ← gxj .
Now consider relation (1): M1 at e1 and M2 at e2 are the

same message. The proof for the other cases can also be
shown similarly.
If vk is not between e1 and e2, B terminates. Other-

wise, B generates message M seen at the incoming edge

of vk as follows. B randomly selects R0, R1, R2, R3, R4
R←

Z∗
p and M ← (β, θ, B0, B1, . . . , BN−1, γ1, γ2, γ3, γ4, λ1, λ2),

where Bi = (αi+1, δi),
β ← AR0 ,
αi ← d(random value), (1 ≤ i ≤ k − 1)

αk ← RR0·ek+1 ,
αi ← RR0 ·Axk+1·R0 · . . . ·Axi−1·R0 ·Axi·ei+1·R0(k + 1 ≤ i ≤
n − 1)),
αn ← RR0 · Axk+1·R0 · . . . · Axn−1·R0 · Axn·⊥n+1·R0 ,
θ ← AR1 ,
δ0 ← AR1·x0·⊥0/(Ax1·R1 · Ax2·R1 · . . . · Axk−1·R1),
δi ← AR1·xi·ei/(Axi+1·R1 · Axi+2·R1 · . . . · Axk−1·R1)(1 ≤ i ≤
k − 2),
δk−1 ← AR1·xk−1·ek−1 · RR1

δk ← RR1·(ek+1) · AR1·xk+1 ,
δi ← RR1 ·AR1·xk+1 ·. . .·AR1·xi−1 ·AR1·xi·(ei+1) ·AR1·xi+1(k+
1 ≤ i ≤ n − 1),
γ1 ← m · RR2 · Axk+1·R2 · . . . · Axn·R2 ,
γ2 ← AR2 ,
γ3 ← RR3 · Axk+1·R3 · . . . · Axn·R3 ,
γ4 ← AR3 ,
λ1 ← Ax0·R4 · Ax1·R4 · . . . · Axk−1·R4 , and
λ2 ← AR4 .
Note that B knows the values R0, R1, R2, R3, R4 and is

able to generate a message observed at any node before vk

on the route that is consistent with this message.
B generates the message after decryption at vk

(β, θ, B̄0, B̄1, . . . , ¯BN−1, γ̄1, γ2, γ̄3, γ4, λ̄1, λ2), where
B̄i = (¯αi+1, δ̄i) as follows.
ᾱk ← d(random value),
ᾱi ← Axk+1·R0 · . . . ·Axi−1·R0 ·Axi·ei+1·R0(k+1 ≤ i ≤ n−1),
ᾱn ← Axk+1·R0 · . . . · Axn−1·R0 · Axn·⊥n+1·R0 ,
δ̄0 ← AR1·x0·⊥0/(Ax1·R1 · Ax2·R1 · . . . · Axk−1·R1 · RR1),
δ̄i ← AR1·xi·ei/(Axi+1·R1 ·Axi+2·R1 · . . . ·Axk−1·R1 ·RR1)(1 ≤
i ≤ k − 2),

¯δk−1 ← AR1·xk−1·ek−1/RR1 ,
δ̄k ← RR1·ek · AR1·xk+1 ,
δ̄i ← AR1·xk+1 · . . . ·AR1·xi−1 ·AR1·xi·(ei+1)AR1·xi+1(k + 1 ≤
i ≤ n − 1),
γ̄1 ← m · Axk+1·R2 · . . . · Axn·R2 ,
γ̄3 ← Axk+1·R3 · . . . · Axn·R3 , and
λ̄1 ← Ax0·R4 · Ax1·R4 · . . . · Axk−1·R4 · RR4 .

B then re-randomizes and continues relaying this message.
The procedure for relaying the return message can be per-
formed similarly.
If (g, A, B, R) ∈ D, then the simulation is perfect, that is,

the route information is the real information. Thus A can
detect whether M1 = M2 with non-negligible advantage ϵ.
If (g, A, B, R) ∈ R, then these blocks are random blocks,
and A's advantage is 0.
Thus, if the proposed return route information scheme

is not secure, the DDH problem can be solved with non-
negligible probability.

If two neighboring nodes vj and vj+1 are corrupted, the
following attack is possible. When vj+1 receives message M
from vj and detects αi+1 = βej+2·xj+1 from Bi = (αi+1, δi),
it knows that δi = θxj+1 ·θxj ·ej . Thus, xj+1 replaces δi with

δ′i = θxj+1 · θxj ·e′j . and continues the decryption procedure.
When vj decrypts e′j , it can detect that this message is a
reply to M . Thus Assumption 2 is introduced for corruption.

7. SYMMETRIC SCHEME FOR FORWARD
AND REPLY MESSAGES

The above scheme is asymmetric, that is, the procedures
for forward messages and reply messages di�er. Thus, any
node can detect whether a message is a forward message

or a reply message. This section discusses a modi�cation
to prevent this type of detection. We need the additional
assumption that the replying node is not corrupted.
The main idea is as follows. The ElGamal encryption is

symmetric, that is, encryption and decryption can be ex-
changed as follows:

(Public-key and private-key) xi
R← Z∗

p . yi ← gxi . xi is
the private key and yi is the public key.

(Scheme 1) Encryption: r
R← Z∗

p . (gr, m · yr
i) is the ci-

phertext.
Decryption: Given (X, Y), execute Y/Xxi and obtain m.

(Scheme 2) Encryption: r
R← Z∗

p . (gr, m/yr
i) is the cipher-

text.
Decryption: Given (X, Y), execute Y ·Xxi and obtain m.
When encryption is executed by �·�, the decryption can

be performed by �/� and vice versa.
The procedure in the previous section performs δ/θxi for

forward messages and δ · θxi for reply messages. We can
make another scheme that uses δ · θxi for forward messages
and δ/θxi for reply messages. The sender randomly chooses
these two schemes, then it becomes impossible for a node to
detect whether a given message is a forward message or a
reply message. The details are as follows.
(Initialization) First, sender node S chooses a random bit

b
R← {0, 1}.
S chooses r, r′, r1, r2.r

′
1

R← Z∗
p and generates the message

M = (b, β, θ, B0, B1, . . . , BN−1, γ1, γ2, γ3, γ4, λ1, λ2), where
Bi = (αi+1, δi) as follows.
(Case 1) when b = 0:

β ← gr,
αi ← (y1 · y2 · . . . · yi−1)

r · yei+1·r
i (1 ≤ i ≤ n − 1),

αn ← (y1 · y2 · . . . · yn−1)
r · y⊥n+1·r

n ,

θ ← gr′
,

δ0 ← y⊥0·r′

0 · yr′
1 ,

δi ← (y1 · y2 · . . . · yi−1)
r′
· y(ei+1)·r′

i · yr′
i+1(1 ≤ i ≤ n − 1).

γ1 ← m · (y1 · y2 · . . . · yn−1 · yn)r1 ,
γ2 ← gr1 ,
γ3 ← (y1 · y2 · . . . · yn−1 · yn)r2 ,
γ4 ← gr2 ,

λ1 ← y
r′
1

0 , and

λ2 ← gr′
1 .

(case 2) when b = 1:
β ← gr,
αi ← (y1 · y2 · . . . · yi−1)

−r · yei+1·r
i (1 ≤ i ≤ n − 1),

αn ← (y1 · y2 · . . . · yn−1)
−r · y⊥n+1·r

n ,

θ ← gr′
,

δ0 ← y⊥0·r′

0 · y−r′

1 ,

δi ← (y1 · y2 · . . . · yi−1)
−r′

· y(ei−1)·r′

i · y−r′

i+1(1 ≤ i ≤ n − 1),
γ1 ← m · (y1 · y2 · . . . · yn−1 · yn)r1 ,
γ2 ← gr1 ,
γ3 ← (y1 · y2 · . . . · yn−1 · yn)r2 ,
γ4 ← gr2 ,

λ1 ← y
r′
1

0 , and

λ2 ← gr′
1 .

Bn, Bn+1 . . . , BN−1 are dummy values. S permutes Bi(0 ≤
i ≤ N − 1) randomly. v0 sends M to e1.
(Decryption) When a message (b, β, θ, B0, B1, . . . , BN−1,

γ1, γ2, γ3, γ4, λ1, λ2). arrives at node vj , vj searches for a
block Bi = (αi+1, δi)(0 ≤ i ≤ N − 1) that satis�es αi+1 =

βej+1·xj for some ej+1 or αi+1 = β⊥j+1·xj . Let Bk =
(αk+1, δk) be the block that satis�es the above condition.
If the latter condition is satis�ed, vj is the destination of

this message, Then vj obtains the message content m by
calculating γ1/γ2

xj .
If the former condition is satis�ed, ej+1 is the edge to

which vj must relay this message.
If vj wants to send a reply message to S, the procedure

for the initialization on return should be employed.
Otherwise, execute the following procedure.
For the elements γi(i = 1, 2, 3, 4), and λi(i = 1, 2), vj

calculates
γ̄1 ← γ1/γ

xj

2 ,
γ̄3 ← γ3/γ

xj

4 , and
λ̄1 ← λ1 · λ

xj

2 .
For Bi, vj executes the following procedure according to

the value of b.
(Case 1) when b = 0:
vj decrypts every block Bi = (αi+1, δi)(i ̸= k) by calcu-

lating
¯αi+1 ← αi+1/βxj and

δ̄i ← δi/θxj .
vj calculates

δ̄k ← δk/θ2·xj ,
which is the extra decryption.
(Case 2) when b = 1:
vj decrypts every block Bi = (αi+1, δi)(i ̸= k) by calcu-

lating
¯αi+1 ← αi+1 · βxj and

δ̄i ← δi · θxj .
vj calculates

δ̄k ← δk · θ2·xj ,
which is the extra decryption.
(Re-randomization) (the same for b = 0 and b = 1)
Let (b, β, θ, B̄0, B̄1, . . . , ¯BN−1, γ̄1, γ2, γ̄3, γ4, λ̄1, λ2), where

B̄i = (¯αi+1, δ̄i) is the message after the above decryption is
performed. vi re-randomizes the message with the following
procedure.

vj selects r0, r1, r2, r3, r4
R← Z∗

p and calculates
eαi ← ᾱi

r0(1 ≤ i ≤ N),
eβ ← βr0 ,
eδi ← δ̄i

r1(0 ≤ i ≤ N − 1),
eθ ← θr1 ,
eγ1 ← γ̄1 · γ̄3

r2 ,
eγ2 ← γ2 · γr2

4 ,
eγ3 ← γ̄3

r3 ,
eγ4 ← γr3

4 ,
fλ1 ← λ̄1

r4 , and
fλ2 ← λr4

2 .
The message after re-randomization is

(b, eβ, eθ, fB0, fB1, . . . , B̂N−1, eγ1, eγ2, eγ3, eγ4, fλ1, fλ2), where fBi =

(gαi+1, eδi).
(Permutation) After the re-randomization, vj permutes

the blocks Bi(0 ≤ i ≤ N − 1) at random. After the permu-
tation, vj sends the message to ej+1.
(Initialization on return) When vj decides to send a reply

message m′ to S, the following procedure is executed.
(Case 1) when b = 0: vj sets ¯αk+1 ← δk/θxj .
(Case 2) when b = 1: vj sets ¯αk+1 ← δk · θxj .
The following is the common procedure for b = 0 and

b = 1.
For each Bi = (αi+1, δi)(i ̸= k), vj sets ¯αi+1 ← δi.

vj re-randomizes them by choosing r
R← Z∗

p and setting
eβ ← θr, and
eαi ← ᾱi

r(0 ≤ i ≤ N − 1).
The forward route information is replaced with dummy

values as follows:
vj sets eδi ← gi(0 ≤ i ≤ N − 1) and θ ← gN where

gi
R← G(0 ≤ i ≤ N) are randomly selected elements.
In order to append the reply message content m′, vj exe-

cutes the following. vj chooses r0, r1
R← Z∗

p and calculates
eγ1 ← m′ · λr0

1 ,
eγ2 ← λr0

2 ,
eγ3 ← λr1

1 , and
eγ4 ← λr1

2 .
The original message is also replaced with a dummy value.

λ̃1 ← gN+1,
λ̃1 ← gN+2 , where

gN+1, gN+2
R← G.

Now the return message is (1 − b, eβ, eθ, fB0, fB1, . . . , B̂N−1,

eγ1, eγ2, eγ3, eγ4, fλ1, fλ2), where fBi = (gαi+1, eδi)(0 ≤ i ≤ N − 1).

vj permutes fBi(0 ≤ i ≤ N − 1) at random. vj sends
the reply message to ej , from which the relaying message
arrived.

Note that the value of b is also replaced with 1 − b to
indicate whether �·� or �/� is applied. The procedure for
receiving reply messages is the same as that for forward
messages.
When returning a message, the forward route information

is not removed but replaced with a dummy value. If a ma-

licious node vi replaces αi = gr·xiei with α′
i = gr·xie′i and

vj does not replace it with a dummy value, vi can decrypt
e′i when this message is returned to vi from δi−1 (which was
originally αi). Thus it is necessary for the return node vj to
honestly replace forward route information with a dummy
value.

8. CONCLUSION
This paper presented a return route information encryp-

tion scheme for onion-based mix-nets. The proposed scheme
is the �rst one that (1) allows any node to send a reply mes-
sage to the original sender and (2) allows multiple reply
messages. The remaining problem includes �nding a way to
eliminate the corruption assumptions.

9. REFERENCES
[1] J. Camenisch and A. Lysyanskaya: �A Formal

Treatment of Onion Routing,� Proc. of Crypto 2005,
LNCS Vol. 3621, pp. 169-187 (Aug. 2005).

[2] D.L. Chaum: �Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms,� Communications
of the ACM, Vol. 24, No. 2, pp. 84-88 (1981).

[3] R. Clayton: �Improving Onion Notation,� 3rd
Workshop on Privacy Enhancing Technologies LNCS
Vol. 2760 pp. 81-87 (Mar. 2003).

[4] G. Danezis, R. Dingledine, and N. Mathewson:
�Mixminion: Design of a Type III Anonymous
Remailer Protocol,� Proc. of IEEE Symposium on
Security and Privacy, pp.2-15 (May 2003).

[5] G. Danezis: �Breaking Four Mix-related Schemes
Based on Universal Re-encryption,� Proc. of 9th

Information Security Conference LNCS Vol. 4176, pp.
46-59 (Aug. 2006).

[6] G. Danezis and C. Diaz: �A Survey of Anonymous
Communication Channels,� Microsoft Research
Technical Report MSR-TR-2008-35 (Feb. 2008).

[7] R. Dingledine, N. Mathewson, and P. Syverson: �Tor:
The Second-Generation Onion Router,� Proc. of 13th
USENIX Security Symp. p.21 (Aug. 2004).

[8] P. Golle, M. Jakobson, A. Juels, and P. Syverson:
�Universal Re-encryption for Mixnets,� CT-RSA 2004,
LNCS Vol. 2964, pp. 163-178 (2004).

[9] D. M. Goldschlag, M. G. Reed, and P. F. Syverson:
�Onion Routing for Anonymous and Private Internet
Connections,� Communications of the ACM, Vol. 42,
No. 2, pp.39-41 (Feb. 1999).

[10] M. Gomuªkiewicz, M. Klonowski, and M. Kutyªowski;
�Onions Based on Universal Re-encryption -
Anonymous Communication Immune Against
Repetitive Attack,� WISA 2004, LNCS Vol. 3325, pp.
400-410 (2004).

[11] C. Gülcü and G. Tsudik: �Mixing E-mail with
BABEL,� Proc. of IEEE Symp. on Network and
Distributed System Security, pp. 2-16 (Feb. 1996).

[12] M. Klonowski, M. Kutylowski, and F. Zagorski:
�Anonymous Communication with On-line and
O�-line Onion Encoding,� Proc. of Current Trends in
Theory and Practice of Informatics (SOFSEM 2005),
LNCS Vol. 3381, pp. 229-238 (Jan. 2005).

[13] T. Lu, B. Fang, Y. Sun, and L. Guo: �Some Remarks
on Universal Re-encryption and A Novel Practical
Anonymous Tunnel,� Proc. of ICCNMC, LNCS Vol.
3619, pp. 853-862 (2005).

[14] C. A. Melchor and Y. Deswarte: �From DC-Nets to
pMIXes: Multiple Variants for Anonymous
Communications,� Proc. of 5th Symp. on Network
Computing and Applications(NCA), pp.163-172 (July
2006).

[15] K. Peng, J. M. Nieto, Y. Desmedt, and E. Dawson:
�Klein Bottle Routing: An Alternative to Onion
Routing and Mix Network,� ICISC 2006, LNCS Vol.
4296, pp. 296-309 (2006).

[16] V. Shmatikov and M.-H. Wang: �Timing Analysis in
Low-Latency Mix Networks: Attacks and Defenses,�
ESORICS 2006, LNCS Vol. 4189, pp. 18-33 (Sep.
2006).

[17] B. Timmerman: �A Security Model for Dynamic
Adaptive Tra�c Masking,� Proc. of 1997 workshop on
New security paradigms, pp. 10 -116 (1997).

[18] B. Timmerman: �Secure Dynamic Adaptive Tra�c
Masking,� Proc. of 1999 workshop on New security
paradigms, pp. 13-24 (1999).

[19] H. Toriyama, N. Kunihiro, and K. Ohta: �Return
Message-Receivable Anonymous Routing Scheme
without Reveal of Sender ID,� SCIS2007, 3B4-6 (Jan.
2007).

