
A Feasibility Decision Algorithm for Rate Monotonic
Scheduling of Periodic Real-Time Tasks

Yoshifumi Manabe Shigemi Aoyagi

NTT Basic Research Laboratories
3- 1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 Japan

Abstract

The rate monotonic scheduling algorithm is a com-
monly used task scheduling algorithm for periodic real-
time task systems. This paper discusses feasibility de-
cision fo r a given real-time task system b y the rate
monotonic scheduling algorithm. It presents a new
necessary a n d suficient condition fo r a given task sys-
tem to be feasible, and a new feasibility decision algo-
rithm based on that condition. The time complexity of
this algorithm depends solely on the number of tasks.
This algorithm can be applied to the inverse-deadline
scheduling algorithm, which is an extension of the rate
monotonic scheduling algorithm.

1 Introduction

In real-time systems, there is a time constraint
on computation, which is just as important as the
correctness of computation. In an attempt to sat-
isfy this constraint, many scheduling algorithms have
been discussed [3]. The rate monotonic scheduling
algorithm [lo] is one of commonly used scheduling
algorithms for periodic real-time task systems be-
cause it is optimal among fixed-priority preemptive
scheduling algorithm. Furthermore, various exten-
sions have been discussed, for example, scheduling
aperiodic tasks while still meeting the deadlines of
periodic tasks [ll], scheduling when a task is added
or deleted or a task period is modified [4][5][12], and
scheduling when some tasks share resources [l] [13].

A necessary and sufficient condition for a given pe-
riodic real-time task system to be feasible by the rate
monotonic scheduling algorithm has been shown [lo].
Two feasibility decision algorithms, the scheduling
point test algorithm [6] and the completion-time test
algorithm [14], have been shown. The time complexi-
ties of these two algorithms depend on both the num-
ber of tasks and the task periods.

This paper presents a new necessary and sufficient
condition for feasibility along with a new feasibility de-
cision algorithm, a reduced scheduling point test algo-
rithm. The time complexity of this algorithm depends
solely on the number of tasks. Thus it is a constant
if the number of tasks is a constant. This algorithm
can also be applied to determine the feasibility by the
inverse-deadline scheduling algorithm [9] [7], which is
an extension of the rate monotonic scheduling algo-
rithm.

In this paper, section 2 defines real-time task
scheduling. Section 3 summarizes previous results for
feasibility decision algorithms. Section 4 gives the
necessary and sufficient condition to be feasible, and
shows the feasibility decision algorithm based on this
condition. Section 5 discusses an extension for the
inverse-deadline scheduling algorithm. Section 6 sum-
marizes the paper.

2 Scheduling periodic real-time tasks

This section gives the formulation of the real-time
scheduling.

Definition 1 (Periodic real-time task system)
[lo1

Perzodzc real-tzme task system
X = { q , r 2 , . . . , rn} is a set of tasks. These tasks
are zndependent an that job requests f o r a certazn
task do n o t depend o n the completzon of requests
f o r other tasks.

Each task r, zs perzodzc, wzth a constant znterval
p , between job requests.

a E a c h task r, h a s a n znztzahzataon tzme I % (> 0)
Assume that minl<,<,I, = 0
r, are znztzated at I , + k p , (k = 0 , 1 ,

The jobs for task -
)

2 12
1080-1812/95 $04.00 0 1995 IEEE

Each task I-; has a deadline d i (5 p i) . A job ini-
tiated at Ii + kpi(k = 0 , 1 , . . .) must be completed
before Ii + kpi + d;(k = 0 , 1 , . . .).

The computation requirement in each j o b for task
ri is a constant e;(< d i) .

Jobs can be preempted at any time and the over-
head for job swapping can be ignored.

Unless otherwise stated, we assume that d; = p i (1 5
i 5 n) , that is, each task must be completed before
the next request for it. Section 5 will discuss the case
in which d; < p i .

When Ii = Ij for all 1 I i , j 5 n, the task system is
said to be synchronous. Otherwise, it is asynchronous.
This paper addresses only synchronous systems. Note
that, as easily derived from Property 1, a synchronous
system is less feasible than an asynchronous system
with the same intervals, deadlines, and computation
requirements. Thus, when the initialization times are
unknown, the worst case can be obtained by testing
the feasibility of a synchronous system. The feasibility
of asynchronous systems has been discussed in some

A scheduling algorithm is a set of rules that deter-
mine the jobs to be executed at aparticular time. This
paper is concerned only with fixed-priority preemptive
scheduling algorithms, which work as follows. A dis-
tinct and fixed priority is assigned to each task. When
a job request arises with a priority higher than the one
currently being executed, the current job is immedi-
ately interrupted and the new job is started. Dynamic-
priority scheduling algorithms, in which the priority
for each request varies during execution, have also
been discussed [2][8]. Although these can be more ef-
fective than fixed-priority scheduling algorithms, they
are more difficult to implement. This paper thus con-
siders only fixed-priority scheduling algorithms.

papers PI PI.

Definition 2 (Feasibility) [lo] For a task system
X and a scheduling algorithm S , X is feasible b y S i f
and only if all deadlines of the tasks in X are met b y
3.

X is feasible i f and only i f it is feasible b y some
scheduling algorithm.

Thus, the optimal scheduling algorithm S is consid-
ered to be the one which satisfies the following: if X
is feasible, X is feasible by S.

3 Previous results on the rate mono-
tonic scheduling algorithm

This section summarizes previous results on feasi-
bility by the rate monotonic scheduling algorithm.

Definition 3 (Rate monotonic scheduling) [lo]
The rate monotonic scheduling algorithm is a fixed-
priority preemptive scheduling algorithm which assigns
a higher priority to a task with a shorter period.

The rate monotonic scheduling algorithm is opti-
mal among fixed-priority preemptive scheduling algo-
rithms [lo] .

Unless otherwise stated, we label the tasks so that
Pl L P2 I . . . L Pn.

Definition 4 (Critical instant) [lo] The response
time for a job request of a certain task is defined as
the time span between the request and the end of the
response to that request. A critical instant for a task
is defined as an instant at which a job request for that
task will have the longest response time.

Property 1 [lo] When dj = pi for all i, a criti-
cal instant for any task occurs whenever the task is
requested simultaneously with requests for a l l higher
priority tasks.

Since I; = 0(1 I i 5 n), the following property can be
immediately derived from this property.

Property 2 [lo] Task system X is feasible b y the
rate monotonic scheduling algorithm i f the first j o b of
each task meets its deadline.

Let us define the utilization factor Ui of task ri as
Ui = c ; / p i . The following relations between feasibility
and the utilization factor have been shown. The latter
is trivial.

Property 3 [lo]
rate monotonic scheduling algorithm if

Task system X is feasible b y the

cyz1 U; 5 n(21/n - 1).

Property 4 Task system X is not feasible b y any
scheduling algorithm if cy=l U; > 1.

The following necessary and sufficient condition to be
feasible has been proved.

213

Property 5 [6] Task system X is feasible b y the
rate monotonic scheduling algorithm i f and only ifL =
maxl<i<nLi - - 5 1, where
L~ = m i n t E s , ~ i (t) 7 u t) = c;=lcj . ~ t / ~ ~ i / t ,
si = { k . p j 1 j = 1,2,. . . ,i; le = i , 2 , . . . , b i / p j] } .

The scheduling point set Si for task ri is defined as T~’S
first deadline pi and the deadlines of higher priority
tasks prior to pi. This means that the task system is
feasible if and only if, at some scheduling point, all
currently existing jobs can be executed.

(Example 1) n = 3, p l = 100, c1 = 40, p2 = 150,
c2 = 40, p3 = 350, and c3 = 100.
When the scheduling point test algorithm is applied to
this task system, the following equations are checked:
i = 1: SI = (100).

t = 100: Li(100) = 40/100 < 1. Thus, L1 < 1.

t = 100: Lz(100) = 80/100 < 1. Thus, L2 < 1.
3: S3 = { 100,150,200,300,350).

t = 100: L3(100) = 180/100 > 1.
t = 150: L3(150) = 220/150 > 1.
t = 200: L3(200) = 260/200 > 1.
2 = 300: &(300) = 300/300 = 1.

i = 2: Sz = { 100,150}.

i

Thus, L3 5 1, so the task system is feasible. 4

(Example 2) n = 3, p1 = 100, CI = 60, p2 = 150,
c2 = 50, p3 = 350, and c3 = 20.
i = 1: s1 = (100).

t = 100: Ll(100) = 60/100 < 1. Thus, L1 < 1.
i = 2: Sz = (100, l50}.

t = 100: Lz(100) = 110/100 > 1.
t = 150: Lz(150) = 170/150 > 1.

Thus, L2 > 1, {TI, T Z } is not feasible, so the whole
task system is not feasible. 4

Note that Li 5 1 does not imply that Lj 5 l(j < i) .
In the above example, &(300) = 1 and thus L3 5 1.
Calculation of Li for all i(l 5 i 5 n) is therefore
necessary.

Though this algorithm presents all instant when
jobs might be preempted, the time complexity of this
algorithm depends on the number of tasks and the
maximum period when the task periods are integers.
There are cases that the time complexity of this algo-
rithm is not so small even if the number of tasks is a
constant.

Lemma 1 For any integer k , there is a task system
X which satisfies 1x1 = 2 and the time complexity of
the scheduling point test algorithm for X is at least
O(k) -

(Proof) Consider the following task system:
T , p2 = (k 2 -

2) / k . T , and c2 = (k 2 - k + l)/(k2 - k) . T .
T is arbitrary and all values of pi and ci can be in-

tegers if T is selected appropriately. This task system
is not feasible.

Now, apply the scheduling point test algorithm.
Since (k - 1)pl < pa < k p ~ , S2 = { T , 2 T , . . . ,(k -
1)T, (k 2 - 2) / k . T } . In order to detect that this task
system is not feasible, it is necessary to calculate Lz(t)
for all t E S2. Therefore, the time complexity of the
scheduling point test algorithm is at least O (k) . 4

Sha et al. [14] have shown another algorithm called
the completion-time test algorithm. This algorithm
is shown in Figure 1 ’. The completion-time test al-
gorithm first determines the computation requirement
necessary for initially existing jobs. The value is ob-
tained from t := c j . Some new jobs might arise
until t . Thus, by calculating t’ := cj . r t / p j l ,
the computation necessary for all jobs until time t is
obtained. If t’ = t , all current jobs can be executed
at time t . Thus, {TI . . . , ~ i } is feasible. If t’ > t , the
computation necessary for all jobs until t’ is calculated
again using the above expression. If t’ satisfies t’ > p i ,
the task system is not feasible.

(Example 3) Apply the completion-time test to
Example 1.
i = 1: It is trivial that T~ is feasible.
i = 2: Initially, t = c1 + c2 = 80.
In the repeat-untilloop, t’ = c1 .[80/pll +c2.r8O/pz] =
80. Since t‘ = t is satisfied, (~ 1 , 7 2 2) is feasible.
i = 3: Initially, t = c1 + c2 + c3 = 180.
In the repeat-until loop, t’ = c1 . r180/pl] + c2 .

Since t # t’ and t’ 5 p3, the repeat-until loop is ex-
ecuted again and t = 260, t‘ = c1 . [260/p11 + c2 .

Since t # t‘ and t’ 5 p3, the loop is executed again and

(Example 4) Apply the completion-time test to

TI = 2 , p i = T , ~1 = (k - 2) / (k - 1)

[180/pzl+ c3 . ri80/~~1 = 260.

r 2 6 0 / ~ , l + c3 . r 2 6 0 / ~ ~ 1 = 300.

t = 300, t i = c l ~ ~ ~ o o / p l ~ + c 2 ~ ~ ~ o ~ ~ p 2 ~ + c 3 . ~ 3 0 0 / p ~ ~ =
300. Since t’ = t , the task system is feasible.

Example 2.
i = 1: It is trivial that 71 is feasible.
i = 2: Initially, t = c1 + c2 = 110.
In the repeat-until loop, t’ = c1 . rllO/pll + c2 .

Since t’ > pa is satisfied, (71, T Z } is not feasible, and
riio/p21 = 170.

thus the whole task system is not feasible.

‘The original algorithm does not answer “not feasible” when
the task set is not feasible. The algorithm in Figure 1 is there-
fore modified to answer “not feasible”.

2 14

Though this algorithm gives the minimum time
when all existing jobs are completed, the complexity
depends on both the number of tasks and the maxi-
mum period when the periods are integers. There are
some cases that the complexity of the algorithm is not
so small even if the number of tasks is a constant.

Lemma 2 For any integer k, there is a task system
X which satisfies 1x1 = 2 and the time complexity of
the completion-time test algorithm for X is at least
O(k) . W

(Proof) Consider the example in the proof of Lemma
1. Note that j p 1 < jcl+cz < (j + l) p l (j = 1 , . . . , k-
1) holds.

For i = 2 , initially t = c1 + cg. In the repeat-until

2cl+ c2, since p l < c1+ cz < 2 p l . In the next iteration
of the repeat-until loop, t‘ = 3cl + c2. Similarly, t‘ is
calculated as 4cl + C Z , 5c1 + CZ, .. . , (k - 1)cl + cz in
each iteration of the loop. Since there are k iterations,

W

loop, t’ = c1 . [(C l + CZ)/Pll + cz . [(C l + cz) /p21 =

the time complexity is at least O(le).

4 A new feasibility decision algorithm

This section shows the new necessary and sufficient
condition for a given task system to be feasible by the
rate monotonic scheduling algorithm. Now, we define
the reduced scheduling point set, R, , as follows:

Definition 5 (Reduced scheduling point set)
Ri = U;,, Q i , where Q i = { p i } ,
Q j = { l t / p j J . p j l t E Q $ + l < k < i) } (l < j < i) .

H

This set satisfies Ri C Si, where Si is the scheduling
point set. R, consists of the following elements: p i ,
the last deadline of task ~ i - 1 before p i , the last dead-
lines of ri-z before each of these two deadlines, the
last deadlines of 7-i-3 before each of these four dead-
lines, and so on. Since some of the elements might be
identical, (Ri(5 2i-1.

(Example 5) For the task system in Examples
1 and 2, R1 = {lOO}, Rz = {100,150}, and R3 =
{300,350}.
For the task system in the proof of Lemma 1, Rl =

Consider the task system in the proof of Lemma 1.
The scheduling point test algorithm does not have to
test Lz(t) at t = T . The reason is as follows. Suppose
that { T I } is feasible. The total length of time when the

{T} and Rz = { (k - 1) T , (k 2 - 2) / k . T } .

jobs of 71 is not executed is longer in the time interval
[0, (k - 1) T] than in [0, TI Thus, the possibility to
finish the execution of the job for 7 2 is greater at (k -
l)T than at T , because the number of 72’s jobs in
[0, TI and [0, (IC - 1) T] are the same. Thus, if & ((k -
1)T) > 1, L z (T) > 1 andif L 2 (T) 5 1 , L z ((k - l) T) 5
1. Therefore, it is unnecessary to test LZ(t) at t =
T if L z (t) is tested at t =: (le - l)T. By a similar
argument, it is enough to test L i (t) only at the “last”
deadlines. The formal proof that the feasibility can be
determined by examining Li (t) only at &. is as follows.

Theorem 1 Task system X is feasible by the rate
monotonic scheduling algorithm i f and only i f
L’ = maz:l<i<,Li _ - < 1 , where
L: = mint&&(t), L i (t) = E;=, cj . [t / p J / t . w

(Proof) Since Ri C S;, it is trivial that, if L’ 5 1 ,
the task system is feasible.

Now assume that the task system is feasible. From
Property 5 , for all i, Li(t) 5 1 for some t(t E Si). Let
T be the maximum t(t E Si) which satisfies Li(t) 5 1.
If T E R,, the theorem is proved. Thus, suppose that
T R, and show a contradiction. Since pi E Ri,
T < pi holds. From the definition of Si, T is a deadline
of one or more tasks. Among these tasks, let rj be the
one whose priority is lowest. j satisfies j < i.

Now, let T* be a deadline of a task r k (j 5 k < i),
which satisfies the following conditions:

T 5 T*, T* + p k < p i , and
there is no deadline of any task Th(k < h 5 i)
within the time interval (T, T* + p k) .

First, prove that there exists T* which satisfies
these conditions. To do so, consider the following pro-
cedure.

t :=T; z:= j ;
repeat

t’ := the first time after t which is a deadline

if t + p , 5 t’ then return(t); /* T* = t . */

z := y (if t’ is a deadline of several tasks,

of some task r y (y > z);

t := t‘;

let y be the lowest priority task’s index);
until t 2 p i ;
Error(‘T* is not found.’);

This procedure returns the value T * . If an error oc-
curs, the value sequence o f t during the iteration of
the procedure, TI(= T),Tj*,, . . . ,Tm(= p ;) satisfies
the following condition: (Note that let rj,, be the task
whose priority is the lowest among the tasks which
have a deadline at q,, .)

215

j1(= j) < j , < . . . < jm(= i) .
ql < q2 < . . . < qm.
qh + p j , > T;h+l(l 5 h 5 m - 1).
There is no deadline of any task whose prior-
ity is lower than rjh within the time interval
(T, T!h+l) '

Tj*_(= p i) E Qjm(= Q i) holds. Since Tj*_-, + p j m - , >
Tj*_, T;m-l is the last deadline of rjm-, before Tjm(E
Qjm). Thus, Tm-, E Qfm-l is satisfied. Similarly,
Th(h = m - 2, m - 3 , . . . , 1) is the last deadline of rjh

before T~*,+,(E Q~,,,), thus Th E Qjh(h = m-2,m-
3 , . . . , 1). Therefore, T(= Tj:) E Qjl and T E Ri. I t is
contradictory that T 6 Ri. Thus, there is a T* which
satisfies the above conditions.

Now consider the interval [T, T* + p g) and suppose
there are no jobs requested before T . Since there is
no deadline of any task whose priority is lower than r g

in [T, T* + p k) , there are no new jobs for such a task
during that interval. This situation can be regarded
as the case that the task system is { T I , . . . , Q} and
each task is initiated at some time after T , that is,
Ii 2 T(i = 1,. . . , k) and I g = T*. Let f i (t) be the
number of ri's jobs requested during the time interval
[T, t) . Let t o be the time when the r g ' s job requested at
T* is finished. Since (7 1 , . . . , T k } is feasible, t o satisfies
T* < t o 5 T*+pk. C h . f h (t 0) 5 to-Tissatisfied
because all current jobs are finished at t o .

Since Li(T) 5 1, ch . rT /ph l 5 T . Now
calculete &(to) . Since there are no new jobs for
{Tg+l . . . T i } in [T,to), E",=, ch . [tO/Phl cL=l ch .
r T / P h l +

T* < to 5 T* + pg 5 p i) ,
&(to) 1. Let T' be the first deadline after to . T'
satisfies Li(T') 5 1 and T' E Si. It is contradic-
tory that T is the maximum t (t E Si) which satisfies

The new feasibility decision algorithm based on this
theorem is shown in Figure 2. At the beginning of the
loop by j , rlist contains the elements of U&+l Qi.
In the repeat-until loop, each element t E QJ is calcu-
lated. If t r l is t , L i (t) 5 1 is tested for feasibility and
t is appended to rl is t . If &(t) 5 1 for some t E d i s t ,
Li 5 1.

Now estimate the time complexity of the algorithm.
/& I 5 2i-1 and for each element t E &, O(i) multi-
plications and divisions are necessary to test whether
L i (t) 5 1. Since this procedure is executed for each
i = 1, . . . , n, the number of multiplications and divi-
sions are at most O(xy=l i .2i-1), that is, O (n .2").

k

ch ' f h (t 0) 5 T + (t o - T) = t o .
Therefore, at to(T

L ; (t) 5 1. Therefore, T E R,.

Note that the time complexity of this algorithm is
independent of the task periods. It is bounded by
a function of the number of tasks. Thus, if n is a
constant, the time complexity is also a constant.

5 Feasibility of the inverse-deadline
scheduling algorithm

This section considers the case in which d, # p, for
some i. This paper assumes that d, 5 p,. For the
case in which d, > p,, Shih et al. have presented a
feasibility condition [15].

The inverse-deadline scheduling algorithm [9] is a
fixed-priority preemptive scheduling algorithm which
is an extension of the rate monotonic scheduling
algorithm2. I t assigns higher priorities to tasks with
shorter deadlines and it is the optimal fixed-priority
preemptive scheduling algorithm when d, 5 p , [9].

In this section we label the tasks so that d l 5 d, 5
. . . 5 d,. For the inverse-deadline scheduling algo-
rithm, the following properties have been proved.

Property 6 [9] A crztrcal anstant for any task occurs
whenever the task 2s requested samultaneously wzth re-

w quests for all hzgher priorzty tasks.

Property 7 [9] Task system X is feasible b y the
inverse-deadline scheduling algorithm if the first j o b

H of each task meets its deadline.

The following lemma can be shown by a proof similar
to that in Ref. [6].

Lemma 3 Task system X as feaszble b y the znverse-
deadlane - schedulang I algorathm af and only zf
L = max1<2<nLz 5 1, where _ _
L - = mintE5,i,(t), ~ (t) = cJ . rt/p#,

k = 1 1 2, . . . 1 Ld,/P,l).
Sz = { d , } U { k . P J I j = 1 1 2 , . . , , i - 1 ;

H

The reduced scheduling point set R, for the inverse-
deadline scheduling algorithm is defined as follows.

Definition 6 & Q;, where

Q; = { Lt /p j l . p j I t E $t (j + 1 5 k 5 i) and
Q: = {dz} ,

t < WPJJ - P j +dJ}(l 5 j < 9. W

'The inverse-deadline scheduling algorithm is different from
the deadline scheduling algorithm [lo] which is a dynamic
scheduling algorithm.

2 16

By employing a discussion similar to the one in the
previous section, the following theorem is proved.

Theorem 2 Task system X is feasible b y the inverse-
deadline - scheduling I algorithm if and only if
L’ = maxlsis,L: 5 1, where

(Sketch of proof) Assume that Li(t) 5 1. Let T
be the maximum tit E st), which satisfies L,(t) 5 1.
Suppose that T # Ri. From the definition of &, there
exists T* which satisfies the following:

T* is a job request time of a task rk (k < i)
(that is, T* = m . pk for some integer m),
T 5 T* , T* + d k < p i , and
there is no job request time for any task
r h (k < h < i) within the time interval
(T,T* + &).

If no such T* exists, there is a sequence Tj*,(=
T) , Tj, , . . . , qm (= d,) which satisfies the following:

Let rJh(h = 1,. . . , m - 1) be the task whose
priority is the lowest among the tasks which
have a job request time at T* .

J ? jl(= j) < j , < . . . < j,-l < j , (= i) .
q1 < Tj2 < ... < Tjm.

+ djh > Ti*&,(l 5 h 5 m - 1).
There is no job-request time for any task
whose priority is lower than rjh within the
time interval (qh, Tj*,+,).

Since Tjh E ojh(l 5 h 5 m), T E k; holds. It is
contradictory that T R;. Therefore, there is a T*
which satisfies the above conditions. From the condi-
tions, there is a T’ within the interval (T*, T* + dk]
which satisfies &(T’) 5 1. It is contradictory that T
is the maximum.

6 Conclusion

This paper has shown a new necessary and suffi-
cient condition for a periodic real-time task system
to be feasible by the rate monotonic scheduling algo-
rithm. We presented a feasibility decision algorithm
based on this condition and showed that its time com-
plexity depends solely on the number of tasks. This
algorithm can be extended for the feasibility decision
of the inverse-deadline scheduling algorithm.

In this algorithm, the definition of the reduced
scheduling point set R, does not require the computa-
tion requirement e; for each task. A better scheduling

point set might be obtained if the values of ci are used
effectively.

Acknowledgements

The authors would like to thank Ms. Naoko Kosugi
of Keio University. This work was inspired by discus-
sions with her. Thanks are also due to Dr. Rikio Onai
of NTT for his encouragement and suggestions, and to
Mr. Koji Sato of NTT for his valuable comments.

References

Baker, T. P.: “Stack-Based Scheduling of Real-
time Processes,” J. of Real-Time Systems, Vol. 3,
pp. 67-99 (1991).

Baruah, S. K., Rosier, L. E., and Howell, R. R.:
“Algorithms and Complexity Concerning the Pre-
emptive Scheduling of Periodic, Real-Time Tasks
on One Processor,” J. of Real-Time Systems, Vol.
3 , pp. 301-324 (1990).

Cheng, S.-C.: “Scheduling Algorithms for Hard
Real-Time Systems,” J . A. Stankovic and K. R a
mamritham Eds. Hard Real-Time Systems, IEEE
Computer Society Press, pp. 150-173 (1987).

Kosugi, N., Takashio, M., and Tokoro, M.: “Mod-
ification and Adjustment of Real-Time Tasks
with Rate Monotonic Scheduling Algorithm,”
Proc. of 2nd Workshop on Parallel and Dis-
tributed Real-Time Systems (Apr. 1994).

Kuo, T.-W. and Mok, A. K.: “Load Adjustment
in Adaptive Real-Time Systems,” Proc. of Real-
Time Systems Symp. pp. 160-170 (Dec. 1991)

Lehoczky, J., Sha, L., and Ding, Y.: “The Rate
Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior,” Proc.
of Real-Time Systems Symp. pp. 166-171 (Dec.
1989).

Lehoczky, J . P.: “Fixed Priority Scheduling of Pe-
riodic Task Sets with Arbitrary Deadlines,” Proc.
of Real-Time Systems Symp. pp. 201-209 (Dec.
1990).

Leung, J. Y.-T. and Merril, M. L.: “A Note
on Preemptive Scheduling of Periodic, Real-Time
Tasks,” Information Processing Letters, Vol. 11,
NO. 3, pp. 115-118 (NOV. 1980).

217

[9] Leung, J . Y.-T. and Whitehead, J.: “On the
Complexity of Fixed-Priority Scheduling of Peri-
odic, Real-Time Tasks,” Performance Evaluation,
Vol. 2, pp. 237-250 (1982).

[lo] Liu, C. L. and Layland, J. W.: “Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-
Time Environment,” J. of the ACM, Vol. 20, No.
1, pp. 46-61 (Jan. 1973).

[ll] Ramos-Thuel, S. and Lehoczky, J. P.: “On-Line
Scheduling of Hard Deadline Aperiodic Tasks in
Fixed-Priority Systems,” Proc. of Real-Time Sys-
t e m Symp. pp. 160-171 (Dec. 1993).

[la] Sha, L., Rajkumar, R., Lehoczky, J., and R a
mamritham, K.: “Mode Change Protocols for
Priority-Driven Preemptive Scheduling,” J. of
Real-Time Systems, Vol. 1, pp. 243-264 (1989).

[13] Sha, L., Rajkumar, R., and Lehoczky, J. P.:
“Priority Inheritance Protocols: An Approach to
Real-Time Synchronization,” IEEE Trans. Com-
puters, Vol. 39, No. 9, pp. 175-185 (Sep. 1990).

[14] Sha, L. and Sathaye, S. S.: “A Systematic Ap-
proach to Designing Distributed Real-Time Sys-
tems,” IEEE Computer, Vol. 26, No. 9, pp. 68-78
(Sep. 1993).

[15] Shih, W. K., Liu, J. W. S., and Liu, C. L.:
“Scheduling Periodic Jobs with Deferred Dead-
lines,” Tech. Report UIUCDS-R-90-1593, Univ.
of Illinois (1990).

function CompletionTimeTest
(n: integer; c[n] ,p[n]: red);

/* n : number of tasks.
c[n] : computation requirement.
p [n] : interval. */

begin
for i := 1 t o TZ do begin

/* testing feasibility of {TI , . . . , T % j . */
t‘ := c;=, cb] ;
repeat

t := t’;
t‘ := E;=, dil ItlPbll;
if t’ > p [i] then return(‘not feasible’);

until t = t‘;
end; /* end of loop by i. */
return(‘Feasible’)

e n d

function ReducedSchedulingPointTest

var 4.1 : red; /* utilization factor. */
begin

(n: integer; c[n],p[n]: real);

u[O] := 0;
for i := 1 to n do U [;] := ~ [i - 11 + c[i] /p[i];

/* U[;] : utilization of {TI , . . . , T; } . */
if U[.] 5 n(2l/” - 1) then return(‘Feasib1e’);
if a[n] > 1 then return(‘not feasible’);
for i := 1 t o N do begin

if L-Test(i)=‘not feasible’ then
return(‘not feasible’)

end;
re turn(‘ Feasi ble’)

end; /* end of main routine */

function L-Test(i: integer);

var r l i s t , rlist2: list; /* lists of scheduling points. */
begin

/* testing feasibility of { T I , . . . , T ;] . */

if U[;] <_ 2(2l/’ - 1) then return(‘Feasib1e’);
i fP[i l L CL=, c b l . rP[il/P[mll t h n

return(‘Feasib1e’);
rZist := { p [i] j ; /* rlist = Qi now. */
for j := i - 1 to 1 step -1 do begin

copy r l i s t to rl is t2; /* rlist =
pointer := f i r s t (r l i s t) ;
repeat /* derive an element in Q:. */

9; now. */

t :=the first element in rl is t2;
delete t from rlist2;

while e lement (poin ter) < t o do
pointer := nez t (poin ter) ;

t o := LtIP[jlJ . P b l ;

/* skip in rl is t until element 2 t o . */
if eZement(pointer) # t o then

begin /* t o is a new element. */
if t o 2 CL=, c [m l . [to/p[mll then

return(‘Feasib1e’);
insert t o just before pointer in rl is t ;
pointer := previous(pointer)

/* e lement (poin ter) = t o now. */
end

until rZist2 =empty
end; /* end of loop by j. */
return(‘not feasible’)

end;

Figure 2. Reduced scheduling point test algorithm.

Figure 1. Completion-time test algorithm.

218

