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Abstract 

The rate monotonic scheduling algorithm is a com- 
monly used task scheduling algorithm for  periodic real- 
time task systems. This  paper discusses feasibility de- 
cision fo r  a given real-time task system b y  the rate 
monotonic scheduling algorithm. It presents a new 
necessary a n d  suficient condition fo r  a given task sys- 
tem to be feasible, and a new feasibility decision algo- 
rithm based on that condition. The time complexity of 
this algorithm depends solely on the number of tasks. 
This algorithm can be applied to  the inverse-deadline 
scheduling algorithm, which is an extension of the rate 
monotonic scheduling algorithm. 

1 Introduction 

In real-time systems, there is a time constraint 
on computation, which is just as important as the 
correctness of computation. In an attempt to sat- 
isfy this constraint, many scheduling algorithms have 
been discussed [3]. The rate monotonic scheduling 
algorithm [lo] is one of commonly used scheduling 
algorithms for periodic real-time task systems be- 
cause it is optimal among fixed-priority preemptive 
scheduling algorithm. Furthermore, various exten- 
sions have been discussed, for example, scheduling 
aperiodic tasks while still meeting the deadlines of 
periodic tasks [ll], scheduling when a task is added 
or deleted or a task period is modified [4][5][12], and 
scheduling when some tasks share resources [l] [13]. 

A necessary and sufficient condition for a given pe- 
riodic real-time task system to be feasible by the rate 
monotonic scheduling algorithm has been shown [lo]. 
Two feasibility decision algorithms, the scheduling 
point test algorithm [6] and the completion-time test 
algorithm [14], have been shown. The time complexi- 
ties of these two algorithms depend on both the num- 
ber of tasks and the task periods. 

This paper presents a new necessary and sufficient 
condition for feasibility along with a new feasibility de- 
cision algorithm, a reduced scheduling point test algo- 
rithm. The time complexity of this algorithm depends 
solely on the number of tasks. Thus it is a constant 
if the number of tasks is a constant. This algorithm 
can also be applied to determine the feasibility by the 
inverse-deadline scheduling algorithm [9] [7], which is 
an extension of the rate monotonic scheduling algo- 
rithm. 

In this paper, section 2 defines real-time task 
scheduling. Section 3 summarizes previous results for 
feasibility decision algorithms. Section 4 gives the 
necessary and sufficient condition to be feasible, and 
shows the feasibility decision algorithm based on this 
condition. Section 5 discusses an extension for the 
inverse-deadline scheduling algorithm. Section 6 sum- 
marizes the paper. 

2 Scheduling periodic real-time tasks 

This section gives the formulation of the real-time 
scheduling. 

Definition 1 (Periodic real-time task system) 
[lo1 

Perzodzc real-tzme task system 
X = { q , r 2 ,  . . . , rn}  is a set of tasks. These tasks 
are zndependent an that job requests f o r  a certazn 
task do n o t  depend o n  the  completzon of requests 
f o r  other tasks. 

Each task r, zs perzodzc, wzth a constant znterval 
p ,  between job requests. 

a E a c h  task r, h a s  a n  znztzahzataon tzme I % ( >  0 )  
Assume that minl<,<,I, = 0 
r, are znztzated at I ,  + k p , ( k  = 0 , 1 ,  

The jobs for  task - 
) 
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Each task I-; has a deadline d i ( 5  p i ) .  A job ini- 
tiated at  Ii + kpi(k = 0 , 1 , .  . .) must be completed 
before Ii + kpi + d;(k = 0 , 1 , .  . .). 

The computation requirement in  each j o b  for task 
ri is a constant e;(< d i ) .  

Jobs can be preempted at any time and the over- 
head for job swapping can be ignored. 

Unless otherwise stated, we assume that d; = p i ( 1  5 
i 5 n ) ,  that is, each task must be completed before 
the next request for it.  Section 5 will discuss the case 
in which d; < p i .  

When Ii = Ij for all 1 I i ,  j 5 n, the task system is 
said to be synchronous. Otherwise, it is asynchronous. 
This paper addresses only synchronous systems. Note 
that, as easily derived from Property 1, a synchronous 
system is less feasible than an asynchronous system 
with the same intervals, deadlines, and computation 
requirements. Thus, when the initialization times are 
unknown, the worst case can be obtained by testing 
the feasibility of a synchronous system. The feasibility 
of asynchronous systems has been discussed in some 

A scheduling algorithm is a set of rules that deter- 
mine the jobs to be executed at aparticular time. This 
paper is concerned only with fixed-priority preemptive 
scheduling algorithms, which work as follows. A dis- 
tinct and fixed priority is assigned to each task. When 
a job request arises with a priority higher than the one 
currently being executed, the current job is immedi- 
ately interrupted and the new job is started. Dynamic- 
priority scheduling algorithms, in which the priority 
for each request varies during execution, have also 
been discussed [2][8]. Although these can be more ef- 
fective than fixed-priority scheduling algorithms, they 
are more difficult to implement. This paper thus con- 
siders only fixed-priority scheduling algorithms. 

papers PI PI. 

Definition 2 (Feasibility) [lo] For a task system 
X and a scheduling algorithm S ,  X is feasible b y  S i f  
and only if all deadlines of the tasks in  X are met b y  
3. 

X is feasible i f  and only i f  it is feasible b y  some 
scheduling algorithm. 

Thus, the optimal scheduling algorithm S is consid- 
ered to be the one which satisfies the following: if X 
is feasible, X is feasible by S. 

3 Previous results on the rate mono- 
tonic scheduling algorithm 

This section summarizes previous results on feasi- 
bility by the rate monotonic scheduling algorithm. 

Definition 3 (Rate monotonic scheduling) [lo] 
The rate monotonic scheduling algorithm is a fixed- 
priority preemptive scheduling algorithm which assigns 
a higher priority to a task with a shorter period. 

The rate monotonic scheduling algorithm is opti- 
mal among fixed-priority preemptive scheduling algo- 
rithms [ lo] .  

Unless otherwise stated, we label the tasks so that 
Pl L P2 I . . . L Pn.  

Definition 4 (Critical instant) [lo] The response 
time for a job request of a certain task is defined as 
the time span between the request and the end of the 
response to that request. A critical instant for a task 
is defined as an instant at  which a job request for that 
task will have the longest response time. 

Property 1 [lo] When dj = pi  for  all i, a criti- 
cal instant for any task occurs whenever the task is 
requested simultaneously with requests for a l l  higher 
priority tasks. 

Since I; = 0(1 I i 5 n),  the following property can be 
immediately derived from this property. 

Property 2 [lo] Task system X is feasible b y  the 
rate monotonic scheduling algorithm i f  the first j o b  of 
each task meets its deadline. 

Let us define the utilization factor Ui of task ri as 
Ui = c ; / p i .  The following relations between feasibility 
and the utilization factor have been shown. The latter 
is trivial. 

Property 3 [lo] 
rate monotonic scheduling algorithm if 

Task system X is feasible b y  the 

cyz1 U; 5 n(21/n - 1). 

Property 4 Task system X is not feasible b y  any 
scheduling algorithm if cy=l U; > 1. 

The following necessary and sufficient condition to be 
feasible has been proved. 
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Property 5 [6] Task system X is feasible b y  the 
rate monotonic scheduling algorithm i f  and only ifL = 
maxl<i<nLi - -  5 1, where 
L~ = m i n t E s , ~ i ( t ) 7  u t )  = c;=lcj . ~ t / ~ ~ i / t ,  
si = { k  . p j  1 j = 1,2,. . . ,i; le = i , 2 , .  . . , b i / p j ] } .  

The scheduling point set Si for task ri is defined as T~’S 
first deadline pi and the deadlines of higher priority 
tasks prior to  pi. This means that  the task system is 
feasible if and only if, at some scheduling point, all 
currently existing jobs can be executed. 

(Example 1) n = 3, p l  = 100, c1 = 40, p2 = 150, 
c2 = 40, p3 = 350, and c3 = 100. 
When the scheduling point test algorithm is applied to  
this task system, the following equations are checked: 
i = 1: SI = (100). 

t = 100: Li(100) = 40/100 < 1. Thus, L1 < 1. 

t = 100: Lz(100) = 80/100 < 1. Thus, L2 < 1. 
3: S3 = { 100,150,200,300,350). 

t = 100: L3(100) = 180/100 > 1. 
t = 150: L3(150) = 220/150 > 1. 
t = 200: L3(200) = 260/200 > 1. 
2 = 300: &(300) = 300/300 = 1. 

i = 2: Sz = { 100,150}. 

i 

Thus, L3 5 1, so the task system is feasible. 4 

(Example 2) n = 3, p1 = 100, CI = 60, p2 = 150, 
c2 = 50, p3 = 350, and c3 = 20.  
i = 1: s1 = (100). 

t = 100: Ll(100) = 60/100 < 1. Thus, L1 < 1. 
i = 2: Sz = (100, l50}. 

t = 100: Lz(100) = 110/100 > 1. 
t = 150: Lz(150) = 170/150 > 1. 

Thus, L2 > 1, {TI, T Z }  is not feasible, so the whole 
task system is not feasible. 4 

Note that Li 5 1 does not imply that Lj 5 l(j < i) .  
In the above example, &(300) = 1 and thus L3 5 1. 
Calculation of Li for all i(l 5 i 5 n)  is therefore 
necessary. 

Though this algorithm presents all instant when 
jobs might be preempted, the time complexity of this 
algorithm depends on the number of tasks and the 
maximum period when the task periods are integers. 
There are cases that the time complexity of this algo- 
rithm is not so small even if the number of tasks is a 
constant. 

Lemma 1 For any integer k ,  there is a task system 
X which satisfies 1x1 = 2 and the time complexity of 
the scheduling point test algorithm for  X is at  least 
O(k) -  

(Proof) Consider the following task system: 
T ,  p2 = ( k 2  - 

2 ) / k .  T ,  and c2 = ( k 2  - k + l)/(k2 - k )  . T .  
T is arbitrary and all values of pi and ci can be in- 

tegers if T is selected appropriately. This task system 
is not feasible. 

Now, apply the scheduling point test algorithm. 
Since ( k  - 1)pl < pa < k p ~ ,  S2 = { T , 2 T , .  . .  ,(k - 
1)T, ( k 2  - 2 ) / k  . T } .  In order to detect that this task 
system is not feasible, it is necessary to  calculate Lz(t)  
for all t E S2. Therefore, the time complexity of the 
scheduling point test algorithm is at least O ( k ) .  4 

Sha et al. [14] have shown another algorithm called 
the completion-time test algorithm. This algorithm 
is shown in Figure 1 ’. The completion-time test al- 
gorithm first determines the computation requirement 
necessary for initially existing jobs. The value is ob- 
tained from t := c j  . Some new jobs might arise 
until t .  Thus, by calculating t’ := cj  . r t / p j l ,  
the computation necessary for all jobs until time t is 
obtained. If t’ = t ,  all current jobs can be executed 
at time t .  Thus, {TI . . . , ~ i }  is feasible. If t’ > t ,  the 
computation necessary for all jobs until t’ is calculated 
again using the above expression. If t’ satisfies t’ > p i ,  
the task system is not feasible. 

(Example 3) Apply the completion-time test to 
Example 1. 
i = 1: It is trivial that T~ is feasible. 
i = 2: Initially, t = c1 + c2 = 80. 
In the repeat-untilloop, t’ = c1 .[80/pll +c2.r8O/pz] = 
80. Since t‘ = t is satisfied, ( ~ 1 , 7 2 2 )  is feasible. 
i = 3:  Initially, t = c1 + c2 + c3 = 180. 
In the repeat-until loop, t’ = c1 . r180/pl] + c2 . 

Since t # t’ and t’ 5 p3, the repeat-until loop is ex- 
ecuted again and t = 260,  t‘ = c1 . [260/p11 + c2 . 

Since t # t‘ and t’ 5 p3, the loop is executed again and 

(Example 4) Apply the completion-time test to 

TI = 2 ,  p i  = T ,  ~1 = ( k  - 2 ) / ( k  - 1) 

[180/pzl+ c3 . ri80/~~1 = 260. 

r 2 6 0 / ~ , l +  c3 . r 2 6 0 / ~ ~ 1  = 300. 

t = 300, t i  = c l ~ ~ ~ o o / p l ~ + c 2 ~ ~ ~ o ~ ~ p 2 ~ + c 3 . ~ 3 0 0 / p ~ ~  = 
300. Since t’ = t ,  the task system is feasible. 

Example 2. 
i = 1: It is trivial that 71 is feasible. 
i = 2:  Initially, t = c1 + c2 = 110. 
In the repeat-until loop, t’ = c1 . rllO/pll + c2 . 

Since t’ > pa is satisfied, (71, T Z }  is not feasible, and 
riio/p21 = 170. 

thus the whole task system is not feasible. 

‘The original algorithm does not answer “not feasible” when 
the task set is not feasible. The algorithm in Figure 1 is there- 
fore modified to answer “not feasible”. 
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Though this algorithm gives the minimum time 
when all existing jobs are completed, the complexity 
depends on both the number of tasks and the maxi- 
mum period when the periods are integers. There are 
some cases that the complexity of the algorithm is not 
so small even if the number of tasks is a constant. 

Lemma 2 For any integer k, there is a task system 
X which satisfies 1x1 = 2 and the time complexity of 
the completion-time test algorithm for X is at least 
O(k ) .  W 

(Proof) Consider the example in the proof of Lemma 
1. Note that j p 1  < jcl+cz < ( j + l ) p l  ( j  = 1 , .  . . , k- 
1) holds. 

For i = 2 ,  initially t = c1 + cg. In the repeat-until 

2cl+ c2, since p l  < c1+ cz < 2 p l .  In the next iteration 
of the repeat-until loop, t‘ = 3cl + c2. Similarly, t‘ is 
calculated as 4cl + C Z ,  5c1 + CZ, .. . , (k - 1)cl + cz in 
each iteration of the loop. Since there are k iterations, 

W 

loop, t’ = c1 . [ ( C l  + CZ)/Pll + cz . [ ( C l  + cz) /p21 = 

the time complexity is at least O(le). 

4 A new feasibility decision algorithm 

This section shows the new necessary and sufficient 
condition for a given task system to be feasible by the 
rate monotonic scheduling algorithm. Now, we define 
the reduced scheduling point set, R, , as follows: 

Definition 5 (Reduced scheduling point set) 
Ri = U;,, Q i ,  where Q i  = { p i } ,  
Q j = { l t / p j J . p j l  t E Q $ + l < k < i ) }  ( l < j < i ) .  

H 

This set satisfies Ri C Si, where Si is the scheduling 
point set. R, consists of the following elements: p i ,  
the last deadline of task ~ i - 1  before p i ,  the last dead- 
lines of ri-z before each of these two deadlines, the 
last deadlines of 7-i-3 before each of these four dead- 
lines, and so on. Since some of the elements might be 
identical, (Ri( 5 2i-1. 

(Example 5) For the task system in Examples 
1 and 2, R1 = {lOO}, Rz = {100,150}, and R3 = 
{300,350}. 
For the task system in the proof of Lemma 1, Rl = 

Consider the task system in the proof of Lemma 1. 
The scheduling point test algorithm does not have to  
test Lz( t )  at t = T .  The reason is as follows. Suppose 
that { T I }  is feasible. The total length of time when the 

{T}  and Rz = { ( k  - 1 ) T ,  ( k 2  - 2 ) / k .  T } .  

jobs of 71 is not executed is longer in the time interval 
[0, ( k  - 1 ) T ]  than in [0, TI Thus, the possibility to 
finish the execution of the job for 7 2  is greater at (k - 
l)T than at T ,  because the number of 72’s jobs in 
[0, TI and [0,  (IC - 1 ) T ]  are the same. Thus, if & ( ( k  - 
1)T) > 1, L z ( T )  > 1 andif L 2 ( T )  5 1 ,  L z ( ( k - l ) T )  5 
1. Therefore, it is unnecessary to test LZ(t) at t = 
T if L z ( t )  is tested at t =: ( le  - l )T.  By a similar 
argument, it is enough to  test L i ( t )  only at the “last” 
deadlines. The formal proof that the feasibility can be 
determined by examining Li ( t )  only at &. is as follows. 

Theorem 1 Task system X is feasible by the rate 
monotonic scheduling algorithm i f  and only i f  
L’ = maz:l<i<,Li _ -  < 1 ,  where 
L: = mint&&(t), L i ( t )  = E;=, cj . [ t / p J / t .  w 

(Proof) Since Ri C S;, it is trivial that, if L’ 5 1 ,  
the task system is feasible. 

Now assume that the task system is feasible. From 
Property 5 ,  for all i, Li( t )  5 1 for some t(t E Si).  Let 
T be the maximum t(t E Si) which satisfies Li( t )  5 1. 
If T E R,, the theorem is proved. Thus, suppose that 
T R, and show a contradiction. Since pi E Ri, 
T < pi holds. From the definition of Si, T is a deadline 
of one or more tasks. Among these tasks, let rj be the 
one whose priority is lowest. j satisfies j < i. 

Now, let T* be a deadline of a task r k ( j  5 k < i), 
which satisfies the following conditions: 

T 5 T*,  T* + p k  < p i ,  and 
there is no deadline of any task Th(k < h 5 i) 
within the time interval (T,  T* + p k ) .  

First, prove that there exists T* which satisfies 
these conditions. To do so, consider the following pro- 
cedure. 

t :=T; z:= j ;  
repeat 

t’ := the first time after t which is a deadline 

if t + p ,  5 t’ then return(t); /* T* = t .  */ 

z := y (if t’ is a deadline of several tasks, 

of some task r y ( y  > z); 

t := t‘; 

let y be the lowest priority task’s index); 
until t 2 p i ;  
Error(‘T* is not found.’); 

This procedure returns the value T * .  If an error oc- 
curs, the value sequence o f t  during the iteration of 
the procedure, TI(= T),Tj*,, . . . ,Tm(= p ; )  satisfies 
the following condition: (Note that let rj,, be the task 
whose priority is the lowest among the tasks which 
have a deadline at q,, .) 
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j1(= j )  < j ,  < . . . < jm(= i ) .  
ql < q2 < . . .  < qm. 
qh + p j ,  > T;h+l(l 5 h 5 m -  1). 
There is no deadline of any task whose prior- 
ity is lower than rjh within the time interval 
(T, T!h+l ) '  

Tj*_(= p i )  E Qjm(= Q i )  holds. Since Tj*_-, + p j m - ,  > 
Tj*_, T;m-l is the last deadline of rjm-, before Tjm(E 
Qjm). Thus, Tm-, E Qfm-l is satisfied. Similarly, 
Th(h = m - 2, m - 3 , .  . . , 1) is the last deadline of rjh 

before T~*,+,(E Q~,,,), thus Th E Qjh(h = m-2,m- 
3 , .  . . , 1). Therefore, T(= Tj:) E Qjl and T E Ri. I t  is 
contradictory that T 6 Ri. Thus, there is a T* which 
satisfies the above conditions. 

Now consider the interval [T, T* + p g )  and suppose 
there are no jobs requested before T .  Since there is 
no deadline of any task whose priority is lower than r g  

in [T, T* + p k ) ,  there are no new jobs for such a task 
during that interval. This situation can be regarded 
as the case that the task system is { T I , .  . . , Q} and 
each task is initiated at some time after T ,  that is, 
Ii 2 T(i  = 1,. . . , k )  and I g  = T*. Let f i ( t )  be the 
number of ri's jobs requested during the time interval 
[T, t ) .  Let t o  be the time when the r g ' s  job requested at 
T* is finished. Since ( 7 1 , .  . . , T k }  is feasible, t o  satisfies 
T* < t o  5 T*+pk. C h . f h ( t 0 )  5 to-Tissatisfied 
because all current jobs are finished at t o .  

Since Li(T) 5 1, ch . rT /ph l  5 T .  Now 
calculete &(to) .  Since there are no new jobs for 
{Tg+l . . . T i }  in [T,to), E",=, ch . [ tO/Phl  cL=l ch . 
r T / P h l  + 

T* < to 5 T* + pg 5 p i ) ,  
&( to)  1. Let T' be the first deadline after to .  T' 
satisfies Li(T') 5 1 and T' E Si. It is contradic- 
tory that T is the maximum t ( t  E Si) which satisfies 

The new feasibility decision algorithm based on this 
theorem is shown in Figure 2. At the beginning of the 
loop by j ,  rlist contains the elements of U&+l Qi. 
In the repeat-until loop, each element t E QJ is calcu- 
lated. If t r l is t ,  L i ( t )  5 1 is tested for feasibility and 
t is appended to rl is t .  If &(t)  5 1 for some t E d i s t ,  
Li 5 1. 

Now estimate the time complexity of the algorithm. 
/& I  5 2i-1 and for each element t E &, O(i )  multi- 
plications and divisions are necessary to test whether 
L i ( t )  5 1. Since this procedure is executed for each 
i = 1, . . . , n, the number of multiplications and divi- 
sions are at most O(xy=l i .2i-1 ), that is, O ( n  .2"). 

k 

ch ' f h ( t 0 )  5 T + ( t o  - T )  = t o .  
Therefore, at to(T 

L ; ( t )  5 1. Therefore, T E R,. 

Note that the time complexity of this algorithm is 
independent of the task periods. It is bounded by 
a function of the number of tasks. Thus, if n is a 
constant, the time complexity is also a constant. 

5 Feasibility of the inverse-deadline 
scheduling algorithm 

This section considers the case in which d, # p, for 
some i. This paper assumes that d, 5 p,. For the 
case in which d, > p,, Shih et al. have presented a 
feasibility condition [15]. 

The inverse-deadline scheduling algorithm [9] is a 
fixed-priority preemptive scheduling algorithm which 
is an extension of the rate monotonic scheduling 
algorithm2. I t  assigns higher priorities to  tasks with 
shorter deadlines and it is the optimal fixed-priority 
preemptive scheduling algorithm when d, 5 p ,  [9]. 

In this section we label the tasks so that d l  5 d, 5 
. . . 5 d,. For the inverse-deadline scheduling algo- 
rithm, the following properties have been proved. 

Property 6 [9] A crztrcal anstant for any task occurs 
whenever the task 2s requested samultaneously wzth re- 

w quests for all hzgher priorzty tasks. 

Property 7 [9] Task system X is feasible b y  the 
inverse-deadline scheduling algorithm if the first j o b  

H of each task meets its deadline. 

The following lemma can be shown by a proof similar 
to that in Ref. [6]. 

Lemma 3 Task system X as feaszble b y  the znverse- 
deadlane - schedulang I algorathm af and only zf 
L = max1<2<nLz 5 1, where _ _  
L - = mintE5,i,(t),  ~ ( t )  = cJ . rt/p#, 

k = 1 1  2, . . . 1 Ld,/P,l). 
Sz = { d , } U { k . P J I  j =  1 1 2 , . . , , i - 1 ;  

H 

The reduced scheduling point set R, for the inverse- 
deadline scheduling algorithm is defined as follows. 

Definition 6 & Q;, where 

Q; = { Lt /p j l  . p j  I t E $t ( j  + 1 5 k 5 i )  and 
Q: = {dz} ,  

t < WPJJ  - P j  +dJ}(l  5 j < 9. W 

'The inverse-deadline scheduling algorithm is different from 
the deadline scheduling algorithm [lo] which is a dynamic 
scheduling algorithm. 
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By employing a discussion similar to the one in the 
previous section, the following theorem is proved. 

Theorem 2 Task system X is feasible b y  the inverse- 
deadline - scheduling I algorithm if and only if 
L’ = maxlsis,L: 5 1, where 

(Sketch of proof) Assume that Li( t )  5 1. Let T 
be the maximum tit E st), which satisfies L,(t)  5 1. 
Suppose that T # Ri. From the definition of &, there 
exists T* which satisfies the following: 

T* is a job request time of a task rk (k  < i )  
(that is, T* = m . pk for some integer m),  
T 5 T* ,  T* + d k  < p i ,  and 
there is no job request time for any task 
r h ( k  < h < i) within the time interval 
(T,T* + &). 

If no such T* exists, there is a sequence Tj*,(= 
T ) ,  Tj, , . . . , qm (= d,) which satisfies the following: 

Let rJh(h = 1,. . . , m - 1) be the task whose 
priority is the lowest among the tasks which 
have a job request time at T* . 

J ?  jl(= j) < j ,  < . . . < j,-l < j , ( =  i ) .  
q1 < Tj2 < ...  < Tjm. 

+ djh  > Ti*&,(l 5 h 5 m - 1). 
There is no job-request time for any task 
whose priority is lower than rjh within the 
time interval (qh, Tj*,+,). 

Since Tjh E ojh( l  5 h 5 m), T E k; holds. It is 
contradictory that T R;. Therefore, there is a T* 
which satisfies the above conditions. From the condi- 
tions, there is a T’ within the interval (T*, T* + dk] 
which satisfies &(T’) 5 1. It is contradictory that T 
is the maximum. 

6 Conclusion 

This paper has shown a new necessary and suffi- 
cient condition for a periodic real-time task system 
to be feasible by the rate monotonic scheduling algo- 
rithm. We presented a feasibility decision algorithm 
based on this condition and showed that its time com- 
plexity depends solely on the number of tasks. This 
algorithm can be extended for the feasibility decision 
of the inverse-deadline scheduling algorithm. 

In this algorithm, the definition of the reduced 
scheduling point set R, does not require the computa- 
tion requirement e; for each task. A better scheduling 

point set might be obtained if the values of ci are used 
effectively. 
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function CompletionTimeTest 
( n: integer; c[n] ,p[n]:  red); 

/* n : number of tasks. 
c[n] : computation requirement. 
p [ n ]  : interval. */ 

begin 
for i := 1 t o  TZ do begin 

/* testing feasibility of {TI , .  . . , T % j .  */ 
t‘ := c;=, cb] ;  
repeat 

t := t’; 
t‘ := E;=, dil ItlPbll; 
if t’ > p [ i ]  then  return(‘not feasible’); 

until t = t‘; 
end; /* end of loop by i. */ 
return( ‘Feasible’) 

e n d  

function ReducedSchedulingPointTest 

var 4.1 : red; /* utilization factor. */ 
begin 

(n: integer; c[n],p[n]: real); 

u[O] := 0; 
for i := 1 to n do U [ ; ]  := ~ [ i  - 11 + c[i] /p[i];  

/* U[;] : utilization of {TI ,  . . . , T; } .  */ 
if U[.] 5 n(2l/” - 1) then  return(‘Feasib1e’); 
if a[n] > 1 then return(‘not feasible’); 
for i := 1 t o  N do begin 

if L-Test(i)=‘not feasible’ then 
return(‘not feasible’) 

end; 
re turn(‘ Feasi ble’) 

end; /* end of main routine */ 

function L-Test(i: integer); 

var r l i s t ,  rlist2: list; /* lists of scheduling points. */ 
begin 

/* testing feasibility of { T I , .  . . , T ; ] .  */ 

if U[;]  <_ 2(2l/’ - 1) then return(‘Feasib1e’); 
i fP[ i l  L CL=, c b l  . rP[il/P[mll t h n  

return(‘Feasib1e’); 
rZist := { p [ i ] j ;  /* rlist  = Qi now. */ 
for j := i - 1 to 1 step -1 do begin 

copy r l i s t  to rl is t2;  /* rlist  = 
pointer := f i r s t ( r l i s t ) ;  
repeat /* derive an element in Q:. */ 

9; now. */ 

t :=the first element in rl is t2;  
delete t from rlist2; 

while e lement (poin ter )  < t o  do  
pointer := nez t (poin ter ) ;  

t o  := LtIP[jlJ . P b l ;  

/* skip in rl is t  until element  2 t o .  */ 
if eZement(pointer) # t o  then 

begin /* t o  is a new element. */ 
if t o  2 CL=, c [ m l .  [to/p[mll then 

return(‘Feasib1e’); 
insert t o  just before pointer in rl is t ;  
pointer := previous(pointer) 

/* e lement (poin ter )  = t o  now. */ 
end 

until rZist2 =empty 
end; /* end of loop by j. */ 
return(‘not feasible’) 

end; 

Figure 2. Reduced scheduling point test algorithm. 

Figure 1. Completion-time test algorithm. 
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