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Abstract. This paper shows card-based cryptographic protocols to cal-
culate several Boolean functions with a standard deck of cards using
private operations. They are multi-party secure computations executed
by multiple semi-honest players without computers. The protocols use
private operations that are executed by a player at a place where the
other players cannot see. Most card-based cryptographic protocols use a
special deck of cards that consists of many cards with two kinds of marks.
Though these protocols are simple and efficient, the users need to prepare
such special cards. Few protocols were shown that use a standard deck of
playing cards, though the protocols with a standard deck of cards can be
easily executed in our daily lives. It was shown that logical AND, logical
XOR, and copy protocols can be executed with the minimum number of
cards. However, the protocols for complicated functions are not known.
This paper shows that by using private operations, all of the following
Boolean functions can be calculated without additional cards other than
the input cards: (1) any three input Boolean functions, (2) half adder and
full adder, and (3) any n-input symmetric Boolean functions. The results
show the effectiveness of private operations in card-based cryptographic
protocols.

Keywords: card-based cryptographic protocols · multi-party secure com-
putation · Boolean functions · half adder · symmetric functions · private
operations · standard deck of cards.

1 Introduction

1.1 Overview of Card-based Cryptographic Protocols

Card-based cryptographic protocols [26, 28] were proposed in which physical
cards are used instead of computers to securely compute values. They can be
used when computers cannot be used or users cannot trust the software on
the computer. Also, the protocols are easy to understand, thus the protocols
can be used to teach the basics of cryptography [4, 21] to accelerate the social
implementation of advanced cryptography [6]. den Boer [3] first showed a five-
card protocol to securely compute the logical AND of two inputs. Since then,
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many protocols have been proposed to realize primitives to compute any Boolean
functions [8, 11, 29, 34, 37, 38, 47, 48] and computate a specific class of Boolean
functions [1, 2, 5, 7, 13–15,18,22,25,35,36,40,41,44–46,50,51].

This paper considers computations of (1) any three input Boolean functions,
(2) half adder and full adder, and (3) any n-input symmetric Boolean functions.
No additional cards are necessary to calculate these functions with a standard
deck of cards when we use private operations.

Note that in this paper, all players are assumed to be semi-honest. Few
works are done for the case when some players are malicious or make mistakes
[10,16,24,27,30,49].

1.2 Standard Deck of Cards

Most of the above works are based on a two-color card model. In the two-color
card model, there are two kinds of cards, ♣ and ♡ . Cards of the same marks
cannot be distinguished. In addition, the back of both types of cards is ? . It
is impossible to determine the mark in the back of a given card of ? . Though
the model is simple, such special cards are not available in our daily lives.

To solve the problem, card-based cryptographic protocols using a standard
deck of playing cards were shown [9,12,13,19,20,23,30,31,33,47]. Playing cards
are available at many houses and are easy to buy. The standard deck of playing
cards is also used for zero-knowledge proof of puzzle solutions [39, 42]. This
paper discusses protocols to calculate logical functions. Niemi and Renvall first
showed protocols that use a standard deck of playing cards [33]. They showed
logical XOR, logical AND, and copy protocols since any Boolean functions can
be realized by a combination of these protocols. Their protocols are ‘Las Vegas’
type protocols, that is, the execution times of the protocols are not limited. The
protocols are expected to terminate within a finite time and the efficiency of these
protocols is evaluated by the expected execution time. However, if the sequence
of the random numbers is bad, the protocols do not terminate forever. Mizuki
showed fixed time logical XOR, logical AND, and copy protocols [23]. Though
the number of cards used by the XOR protocol is the minimum, the ones used
by the logical AND and copy protocols are not the minimum. Koch et al. showed
a four-card ‘Las Vegas’ type AND protocol and it is impossible to obtain a four-
card finite time protocol with the model without private operations [9]. Koyama
et al. showed a three-input ‘Las Vegas’ type AND protocol with the minimum
number of cards [12]. Koyama et al. showed an efficient ‘Las Vegas’ type copy
protocol [13]. Shinagawa and Mizuki showed protocols to compute any n-variable
function using a standard deck of playing cards and a deck of UNO1 cards [47].
Miyahara et al. showed a protocol that solves Yao’s millionares’ problem using a
standard deck of playing cards [19]. Miyahara and Mizuki showed new protocols
that use a special primitive that opens the suit of a playing card [20]. This paper
discusses protocols that publically or privately open the cards. Another class of
protocols is considered, in which each player knows his/her private data, and
1 https://www.letsplayuno.com
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the player privately inputs the data to the protocol. Nakai et al. showed AND,
XOR, and majority protocols [31].

1.3 Private Operations

Randomization or a private operation is the most important primitive in these
card-based protocols. If every primitive executed in a card-based protocol is
deterministic and public, the relationship between the private input values and
the output values is known to the players. When the output values are disclosed,
the private input values can be known to the players from the relationship. Thus,
all protocols need some random or private operation.

First, public randomization primitives have been discussed then recently,
private operations are considered. Many protocols use random bisection cuts [29],
which randomly execute swapping two decks of cards or not swapping. If the
random value used in the randomization is disclosed, the secret input value is
known to the players. If some player privately brings a high-speed camera, the
random value selected by the randomization might be known by analyzing the
image. Though the size of a high-speed camera is very large, the size might
become very small shortly. To prepare for the situation, we need to consider
using private operations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve the millionaires’ problem [32]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards on the
two-color card model [37].

For the primitives of logical AND, logical XOR, and copy operation, the
minimum number of cards is achieved with a standard deck of cards using private
operations [17]. So the research question is whether we can achieve the minimum
number of cards for complicated calculations.

1.4 Our Results

This paper shows new card-based protocols with a standard deck of cards using
private operations to calculate (1) any three input Boolean functions, (2) half
adder and full adder, and (3) any n-input symmetric Boolean functions. All of
these protocols need no additional cards other than the input cards. Thus these
protocols are optimal in regard to the number of cards.

In Section 2 basic definitions and the private operations introduced by [37] are
shown. Then, the sub-protocols shown in [17] and used in this paper are stated.
Section 3 shows protocols to calculate three input Boolean functions. Section 4
shows protocols to calculate half and full adder, and n-input symmetric Boolean
functions. Section 5 concludes the paper.
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2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named as 1 to 52. The number of each card (for example,
1 is the ace of spade and 52 is the king of club) is common knowledge among
the players. The back of all cards is the same ? . It is impossible to determine
the mark in the back of a given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸

x

.

The base of a commitment is the pair of cards used for the commitment. If card
i and j(i < j) are used to set commit(x) (That is, set i j if x = 0 and set
j i if x = 1), the commitment is written as commit(x){i,j} and written as
? ?︸ ︷︷ ︸
x{i,j}

. When the base information is obvious or unnecessary, it is not written.

Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.
Thus, logical negation can be computed without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players are

semi-honest, that is, they obey the rules of the protocols but try to obtain secret
values.

The inputs of the protocols are given in a committed manner, that is, the
players do not know the input values. If a player knows his secure input value x,
the player just makes a commitment of x, and the protocols in this paper can be
used. The output of the protocol must be given in a committed format so that
the result can be used as an input to further computation. If the players need to
obtain the output value, they just open the committed output. Thus committed
output is desirable.

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
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players can know that x = 1 and y = 1. If the output value is 0, the players
must not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

The following protocols use random numbers. Random numbers can be gen-
erated without computers using coin-flipping or some similar methods. During
the protocol executions, cards are sent and received between the players. The
communication is executed by sending the cards between the players to avoid
information leakage during the communication. If the players are not in the same
place during the protocol execution, a trusted third party (for example, the post
office) is necessary to send and receive cards between players.

2.2 Private Operations

We show three private operations introduced in [37]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x), given S0 = ? ?︸ ︷︷ ︸

x

, The player’s output S1 = ? ?︸ ︷︷ ︸
x⊕b

, which is ? ?︸ ︷︷ ︸
x

or ? ?︸ ︷︷ ︸
x

.

Note that a private random bisection cut is the same as the random bisection
cut [29], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.
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Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque Commitment Pair

An opaque commitment pair is defined as a useful situation to design a secure
protocol using a standard deck of cards [23]. It is a pair of commitments whose
bases are unknown to a player. Let us consider the following two commitments
using cards i, j, i′ and j′. The left (right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using
i′ and j′ (i and j), respectively. Such a pair of commitments is called an opaque
commitment pair and written as commit(x){i,j},{i

′,j′}||commit(y){i,j},{i
′,j′}.

The protocols in this paper use a little different kind of pair, called semi-
opaque commitment pair. A player thinks a pair is an opaque commitment pair
but another player knows the bases of the commitments. Let us consider the case
when a protocol is executed by Alice and Bob. Bob privately makes the pair of
commitments with the knowledge of x and y. For example, Bob randomly selects
a bit b ∈ {0, 1} and

S =

{
commit(x){i,j}||commit(y){i

′,j′} if b = 0

commit(x){i
′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i
′,j′}||commit(y){i,j},{i

′,j′} for Alice. Such a pair is
called a semi-opaque commitment pair and written as commit(x){i,j},{i

′,j′}|Alice||
commit(y){i,j},{i

′,j′}|Alice, where the name(s) of the players who think the pair is
a opaque commitment pair is written. Note that a name is not written does not
mean the player knows the bases of the commitments. For example, the above
example says nothing about whether Bob knows the bases or not. Note that the
name of the player is written with the initial when it is not ambiguous.
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2.4 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [38]. The first round
begins from the initial state. The first round is (possibly parallel) local execu-
tions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i− 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values. If the local execution needs many operations, for example, O(n)
operations where n is the size of the problem, we might need another criterion
to consider the cost of local executions.

Let us show an example of a protocol execution, its space complexity, and
time complexity.

Protocol 1 (XOR protocol) [17]
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and commit(y){3,4}

using the same random bit b ∈ {0, 1}. The result is commit(x ⊕ b){1,2} and
commit(y ⊕ b){3,4}. Alice sends these cards to Bob.

2. Bob executes a private reveal on commit(y ⊕ b){3,4}. Bob sees y ⊕ b. Bob
executes a private reverse cut on commit(x⊕ b){1,2} using y ⊕ b. The result
is commit((x⊕ b)⊕ (y ⊕ b)){1,2} = commit(x⊕ y){1,2}.

The number of cards is four since no cards are used other than the inputs.
Let us consider the time complexity of the protocol. The first round ends

at the instant when Alice sends commit(x ⊕ b){1,2} and commit(y ⊕ b){3,4} to
Bob. The second round begins with receiving the cards by Bob. The number of
rounds of this protocol is two.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to send cards between players and
set up so that the cards are not seen by the other players. Thus the number of
rounds is the criterion to evaluate the time complexity of card-based protocols
with private operations.
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2.5 Protocols for AND, Copy, and Other Boolean Functions

This subsection shows the sub-protocols presented in [17] used in this paper’s
protocols. The correctness proof is shown in [17].

AND Protocol Before showing the AND protocol, a subprotocol to fix the
base of commitments is shown.

Protocol 2 (Base-fixed protocol) [17]
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.

(Note: y is a private value that must not be known to the players)
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on both pairs using two distinct
random bits br1, br2 ∈ {0, 1}. The result S1 = commit(x⊕br1)

{1,2},{3,4}|A||commit(y⊕
br2)

{1,2},{3,4}|A. Bob sends S1 to Alice.
2. Alice executes a private reveal on S1. Alice sees x ⊕ br1 and y ⊕ br2. If the

base of the left pair is {1, 2}, Alice just faces down the left pair and the cards,
S2, are the result. Otherwise, the base of the right pair is {1, 2}. Alice makes
S2 = commit(x⊕ br1)

{1,2} using the right cards. Alice sends S2 to Bob.
3. Bob executes a private reverse cut using br1 on S2. The result is commit(x){1,2}.

Using the base-fixed protocol, the AND protocol in [17] is shown below.

Protocol 3 (AND protocol) [17]
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. Alice sends the results, S1 = commit(x ⊕ a1)

{1,2} and S2 =
commit(y){3,4} to Bob.

2. Bob executes a private reveal on S1. Bob sees x⊕ a1. Bob privately sets

S3,0 =

{
commit(0){1,2}||commit(y){3,4} if x⊕ a1 = 0
commit(y){3,4}||commit(0){1,2} if x⊕ a1 = 1

Bob sends S3,0 to Alice.
3. Alice executes private random bisection cuts on each of pairs in S3,0 using

two distinct random bits a2 and a3. Let the result be S3,1.

S3,1 =

{
commit(0⊕ a2)

{1,2}||commit(y ⊕ a3)
{3,4} if x⊕ a1 = 0

commit(y ⊕ a2)
{3,4}||commit(0⊕ a3)

{1,2} if x⊕ a1 = 1

Alice sends S3,1 to Bob.
4. Bob randomly selects bit b1 ∈ {0, 1}. Bob reveals S3,1 and exchanges the

bases of the two commitments if b1 = 1. Let the result be S3,2.

S3,2 =

{
commit(0⊕ a2)

{1,2},{3,4}|A||commit(y ⊕ a3)
{1,2},{3,4}|A if x⊕ a1 = 0

commit(y ⊕ a2)
{1,2},{3,4}|A||commit(0⊕ a3)

{1,2},{3,4}|A if x⊕ a1 = 1

Bob sends S3,2 to Alice.
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5. Alice executes private reverse cuts on the two pairs of S3,2 using a2 and a3,
respectively. Let the result be S4.

S4 =

{
commit(0){1,2},{3,4}|A||commit(y){1,2},{3,4}|A if x⊕ a1 = 0
commit(y){1,2},{3,4}|A||commit(0){1,2},{3,4}|A if x⊕ a1 = 1

Alice then executes a private reverse selection on S4 using a1. Let S5 be the
result and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4}|A

if (a1 = 0 and x⊕ a1 = 1) or (a1 = 1 and x⊕ a1 = 0). The condition equals
x = 1.
S5 = commit(0){1,2},{3,4}|A if (a1 = 0 and x ⊕ a1 = 0) or (a1 = 1 and
x⊕ a1 = 1). The condition equals x = 0. Thus,

S5 =

{
commit(y){1,2},{3,4}|A if x = 1
commit(0){1,2},{3,4}|A if x = 0

= commit(x ∧ y){1,2},{3,4}|A

Alice sends S5 and S6 to Bob.
6. Bob and Alice execute Protocol 2 (Base-fixed protocol) to S5||S6. Then they

obtain commit(x ∧ y){1,2}.

COPY Protocol

Protocol 4 (Copy protocol) [17]
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2}. Let b be
the random bit Alice selects. Alice sends the result, commit(x ⊕ b){1,2}, to
Bob.

2. Bob executes a private reveal on commit(x⊕ b){1,2} and sees x⊕ b. Bob pri-
vately makes commit(x⊕b){3,4}. Bob sends commit(x⊕b){1,2} and commit(x⊕
b){3,4} to Alice.

3. Alice executes a private reverse cut on each of the pairs using b. The result
is commit(x){1,2} and commit(x){3,4}.

The protocol is three rounds.

Preserving an Input In the above protocols to calculate Boolean functions,
the input commitment values are lost. If the input is not lost, the input com-
mitment can be used as an input to another calculation. Thus input preserving
calculation is discussed [34,37].

In the XOR protocol, commit(y⊕b){3,4} is no longer necessary after Bob sets
the result. Thus, Bob can send back commit(y⊕b){3,4} to Alice. Then, Alice can
recover commit(y){3,4} using the private reverse cut. In this modified protocol,
the output is commit(x⊕ y){1,2} and commit(y){3,4} without additional cards.



10 N. Kobayashi and Y. Manabe

By exchanging the roles of x and y, the output can be commit(x ⊕ y){3,4} and
commit(x){1,2}.

An input preserving AND protocol can be obtained using the idea in [34].
When we execute the AND protocol, two cards are selected by Alice at the final
step. The remaining two cards are used to recover an input value. The unused
two cards’ value is {

0 if x = 1
y if x = 0

thus the output is commit(x ∧ y).
Execute the above input preserving XOR protocol for these two output values

so that the input x ∧ y is preserved. The output of the XOR protocol is (x ∧
y) ⊕ (x ∧ y) = y. Thus, input y can be recovered without additional cards.
By executing a base-fixed protocol, the output can be commit(x ∧ y){1,2} and
commit(y){3,4}.

n-input Boolean Functions Since any 2-input Boolean function, NOT, and
COPY can be executed, any n-input Boolean function can be calculated by the
combination of the above protocols using 2n+ 4 cards by the idea in [34,37].

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = x̄1∧x̄2∧· · · x̄n∧f(0, 0, . . . , 0)⊕x1∧x̄2∧· · · x̄n∧f(1, 0, . . . , 0)⊕
x̄1 ∧ x2 ∧ · · · x̄n ∧ f(0, 1, . . . , 0)⊕ · · · ⊕ x1 ∧ x2 ∧ · · ·xn ∧ f(1, 1, . . . , 1).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can
be written as f =

⊕k
i=1 v

i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or x̄j . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 5 (Protocol for any n-variable Boolean function [17]
Input: commit(xi)

{2i+3,2i+4}(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn))

{1,2}.
The additional four cards (two pairs of cards) 1,2,3, and 4 are used as follows.
1 and 2 store the intermediate value to compute f .
3 and 4 store the intermediate value to compute Ti.

Execute the following steps for i = 1, 2, . . . , k.

1. Copy vi1 from the input commit(x1) as commit(vi1)
{3,4}. (Note that if vi1 is

x̄1, NOT is taken after the copy).
2. For j = 2, . . . , n, execute the following procedure: Execute the input preserv-

ing AND protocol to commit(·){3,4} and commit(vij) so that input commit(vij)

is preserved. The result is stored as commit(·){3,4}. (Note that if vij is x̄j,
NOT is taken before the AND protocol, and NOT is taken again for the
preserved input.)
At the end of this step, Ti is obtained as commit(vi1 ∧ vi2 ∧ · · · ∧ vin)

{3,4}.
3. If i = 1, copy commit(·){3,4} to commit(·){1,2}. If i > 1, apply the XOR

protocol between commit(·){3,4} and commit(·){1,2}. The result is stored as
commit(·){1,2}.

At the end of the protocol, commit(f(x1, x2, . . . xn))
{1,2} is obtained.
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3 Protocols for Three-input Boolean Functions

This section shows protocols for three input Boolean functions. The arguments
to show the protocols with six cards are just the same as the one in [35]. The
main difference is that logical AND can be calculated by four cards using private
operations. In our protocols, no additional cards are necessary other than the
cards for inputs.

There are 22
3

= 256 different functions with three inputs. However, some of
these functions are equivalent by replacing variables and taking negations. NPN-
classification [43] was considered to reduce the number of different functions
considering the equivalence class of functions. The rules of NPN-classification
are as follows.

1. Negation of input variables (Example: xi ↔ xi).
2. Permutations of input variables (Example: xi ↔ xj).
3. Negation of the output (f ↔ f).

For example, consider f1(x1, x2, x3) = (x1∧x2)∨x3. Several functions in the
same equivalence class that includes f1 are: f2 = (x1∧x2)∨x3, f3 = (x1∧x3)∨x2,
f4 = f3, and so on.

Input negation and output negation can be executed by card-based protocols
without increasing the number of cards. They are executed by just swapping
input cards or output cards. Permutations of input variables can also be executed
without increasing the number of cards. They can be achieved by just changing
the positions of the input values. Therefore, all functions in the same NPN
equivalence class can be calculated with the same number of cards.

Theorem 1. Any three input Boolean functions can be securely calculated with-
out additional cards other than the input cards with a standard deck of cards
when we use private operations.

Proof. When the number of inputs is 3, there are the following 14 NPN-representative
functions [43]. (Note that x, y, and z are used to represent input variables.)

1. NPN1 = 1
2. NPN2 = x
3. NPN3 = x ∨ y
4. NPN4 = x⊕ y
5. NPN5 = x ∧ y ∧ z
6. NPN6 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
7. NPN7 = (x ∧ y) ∨ (x ∧ z)
8. NPN8 = (x ∧ y) ∨ (x ∧ y ∧ z)
9. NPN9 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)

10. NPN10 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = x⊕ y ⊕ z.
11. NPN11 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
12. NPN12 = (x ∧ z) ∨ (y ∧ z)
13. NPN13 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
14. NPN14 = (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z)
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Among these 14 functions, NPN1 - NPN4 depend on less than three in-
puts. These functions can be calculated without additional cards [17]. We show
a calculation protocol for each of the remaining functions. Note that the out-
put is commit(f){1,2} when the inputs are commit(x){1,2}, commit(y){3,4}, and
commit(z){5,6}.

For NPN5, x∧ y can be calculated without additional cards. Then x∧ y ∧ z
can be calculated without additional cards other than the input cards, x∧y and
z.

NPN7 can be represented as NPN7 = x∧ (y∨z), thus this function can also
be calculated without additional cards.

NPN10 can be calculated as (x⊕ y)⊕ z without additional cards.
NPN13 can be represented as NPN13 = x ∧ (y ⊕ z), thus this function can

also be calculated without additional cards.
NPN14 can be represented as NPN14 = x⊕ (y ∨ z), thus this function can

also be calculated without additional cards.
NPN6 can be represented as NPN6 = (x⊕ y) ∧ (x⊕ z). First, calculate

commit(x⊕y){3,4} with preserving input commit(x){1,2}. Then calculate commit(x⊕
z){1,2}. Then NOT is applied to each result. Next, calculate AND to these results.

NPN8 can be represented as NPN8 = (x⊕ y) ∧ (y ∨ z). First, calculate
commit(x⊕ y){1,2} with preserving input commit(y){3,4}. Then NOT is applied
to the result. Then calculate commit(y ∨ z){3,4}. Next, calculate AND to these
results.

NPN9 can be represented as NPN9 = (x⊕ y ⊕ z) ∧ (x ∨ z). First, calcu-
late commit(x ⊕ y){3,4} with preserving input commit(x){1,2}. Next, calculate
commit((x⊕ y)⊕ z){3,4} with preserving commit(z){5,6}. Then NOT is applied
to the result. Next, calculate commit(x ∨ z){1,2}. Next, calculate AND to these
results.

NPN12 can be calculated as follows. First, calculate commit(x∧z){1,2} with
preserving input commit(z){5,6}. Next, calculate commit(y ∧ z){3,4}. Then, cal-
culate OR to these results by using the AND protocol.

NPN11 can be represented as

NPN11 =

{
z if x⊕ y = 1

x if x⊕ y = 0

Since this equation is similar to the AND equation, the function can be calculated
by modifying the AND protocol as follows.

1. Alice and Bob calculate commit(x⊕y){3,4} with preserving input commit(x){1,2}.
2. Alice executes private random bisection cut on commit(x⊕y){3,4}, commit(x){1,2},

and commit(z){5,6} using different random bit a1, a2, a3 ∈ {0, 1}. Alice sends
the result commit(x ⊕ y ⊕ a1)

{3,4}, commit(x ⊕ a2)
{1,2}, and commit(z ⊕

a3)
{5,6} to Bob.

3. Bob privately select a bit b1 ∈ {0, 1} and exchanges the bases of commit(x⊕
a2)

{1,2} and commit(z ⊕ a3)
{5,6} if b1 = 1. Though Bob sees the committed

values, Bob obtains no information about x and z since Alice randomized
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the values. Bob sends commit(x⊕a2)
{1,2},{5,6}|A||commit(z⊕a3)

{1,2},{5,6}|A

to Alice.
4. Alice executes private reverse cuts to the sequence using a2 and a3. Alice

sends the result commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A to Bob.
5. Bob executes private reveal on commit(x⊕ y ⊕ a1). Bob sets

S2 =

{
commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if x⊕ y ⊕ a1 = 1
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if x⊕ y ⊕ a1 = 0

6. Alice executes a private reverse cut on S2 using the bit a1 generated in
the private random bisection cut. Let the obtained sequence be S3. S3 is
commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if (x⊕ y ⊕ a1 = 1 and a1 = 0)
or (x⊕ y ⊕ a1 = 0 and a1 = 1). The case equals to x⊕ y = 1. The output is
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if (x⊕ y ⊕ a1 = 1 and a1 = 1)
or (x⊕y⊕a1 = 0 and a1 = 0). The case equals to x⊕y = 0. Thus the result
is

S3 =

{
commit(z){1,2},{5,6}|A||commit(x){1,2},{5,6}|A if x⊕ y = 1
commit(x){1,2},{5,6}|A||commit(z){1,2},{5,6}|A if x⊕ y = 0

Note that the left pair has the value of the result.
7. Alice and Bob execute base-fixed protocol on S3. They obtain{

commit(z){1,2} if x⊕ y = 1
commit(x){1,2} if x⊕ y = 0

Therefore, NPN11 can also be calculated without additional cards. ⊓⊔

4 Half Adder, Full Adder, and Symmetric Functions

This section first shows a realization of half adder and full adder. In our protocols,
no additional cards are necessary other than the cards for inputs.

The input and output of the secure half adder are as follows:

– Input: commit(x){1,2} and commit(y){3,4}

– Output: S = commit(x⊕ y){3,4} and C = commit(x ∧ y){1,2}

The half adder is realized by the following steps, whose idea is just the same
as the one in [34].

1. Execute XOR protocol with preserving input x. Thus commit(x){1,2} and
commit(x⊕ y){3,4} are obtained.

2. Obtain commit(x⊕ y){3,4} by swapping the two cards of commot(x⊕y){3,4}.
3. Execute AND protocol to commit(x){1,2} and commit(x⊕ y){3,4} with pre-

serving input commit(x⊕ y){3,4}. Thus commit(x⊕ y){3,4} and commit(x∧
(x⊕ y)){1,2} = commit(x ∧ y){1,2} are obtained.

4. Obtain commit(x⊕y){1,2} by swapping the two cards of commit(x⊕ y){1,2}.
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No additional cards are necessary other than the four input cards.
The input and output of the secure full adder are as follows:

– Input: commit(CI)
{1,2}, commit(x){3,4}, and commit(y){5,6}.

– Output: CO = commit((x∧y)∨(x∧CI)∨(y∧CI))
{1,2} and S = commit(x⊕

y ⊕ CI)
{3,4}.

Since the half adder can be calculated without additional cards, the full adder
can also be calculated without additional cards by the following protocol.

1. Add CI and x using the half adder. The outputs are commit(x ⊕ cI)
{3,4}

and commit(x ∧ CI)
{1,2}.

2. Add commit(y){5,6} to the result commit(x⊕CI)
{3,4} using the half adder.

The outputs are commit(x⊕ y ⊕ CI)
{3,4} and commit(y ∧ (x⊕ CI))

{5,6}.
3. Execute OR protocol to commit(y∧ (x⊕CI))

{5,6} and commit(x∧CI)
{1,2}.

Since (y ∧ (x⊕CI))∨ (x∧CI) = (x∧ y)∨ (x∧CI)∨ (y ∧CI), the carry CO

is obtained by the base of {1, 2}.

Using the half adder and full adder, calculation of symmetric function can be
done by the technique in [34]. n-input symmetric function f(x1, x2, . . . , xn) de-
pends only on the number of variables such that xi = 1. Let Y =

∑n
i=1 xi. Then

the function f can be written as f(x1, x2, . . . , xn) = g(Y ). When Y is given by
a binary representation, Y = ykyk−1....y1, g can be written as g(y1, y2, . . . , yk),
where k = ⌊log n⌋+ 1.

Given input x1, x2, . . . , xn, first, obtain the sum of these inputs using the half
adder and full adder protocols without additional cards. The sum is obtained as
y1, y2, . . . , yk. Then, calculate g using yi. When n ≤ 7, k ≤ 3, thus any three input
Boolean function g can be calculated without additional cards. When n ≥ 8, Y
is represented with k = ⌊log n⌋+ 1 bits. Since n− k ≥ 4, at least 8 input cards
are unused after yis are calculated. Any Boolean function can be calculated with
four additional cards, thus g can be calculated without additional cards other
than the input cards.

Theorem 2. Any symmetric Boolean function can be securely calculated without
additional cards other than the input cards when we use private operations.

5 Conclusion

This paper showed card-based cryptographic protocols to calculate three input
Boolean functions, half adder, full adder, and symmetric functions with a stan-
dard deck of cards using private operations. These results show the effectiveness
of private operations.

One of the important open problems is obtaining another class of Boolean
functions that can be calculated without additional cards using private opera-
tions. However, it seems very difficult to achieve all four-input Boolean functions
without additional cards.
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