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PAPER

Coterie for Generalized Mutual Exclusion Problem∗

Shao Chin SUNG†, Nonmember and Yoshifumi MANABE††, Member

SUMMARY This paper discusses the generalized mutual ex-
clusion problem defined by H. Kakugawa and M. Yamashita. A
set of processes shares a set of resources of an identical type.
Each resource must be accessed by at most one process at any
time. Each process may have different accessible resources. If
two processes have no common accessible resource, it is reason-
able to ensure a condition in resource allocation, which is called
allocation independence in this paper, i.e., resource allocation to
those processes must be performed without any interference. In
this paper, we define a new structure, sharing structure coterie.
By using a sharing structure coterie, the resource allocation al-
gorithm proposed by H. Kakugawa and M. Yamashita ensures
the above condition. We show a necessary and sufficient condi-
tion of the existence of a sharing structure coterie. The decision
of the existence of a sharing structure coterie for an arbitrary
distributed system is NP-complete. Furthermore, we show a re-
source allocation algorithm which guarantees the above require-
ment for distributed systems whose sharing structure coteries do
not exist or are difficult to obtain.
key words: distributed systems, coterie, resource allocation al-
gorithm

1. Introduction

In many distributed systems , processes share resources
such as files, memory, and printers. When mutual ex-
clusion in access to resources must be ensured, each re-
source must not be accessed by more than one process
at the same time. The problem to allocate resources
in such a distributed system is called mutual exclusion
problem.

Many distributed algorithms have been presented
for k-mutual exclusion problem, in which there are k
(≥ 1) shared resources of identical type and all shared
resources are accessible to every process. Garcia-
Molina and Barbara [2] introduced coteries, and showed
a coterie-based algorithm for the 1-mutual exclusion
problem which corresponds to the case of one shared
resource. Fujita et al. [1] and Manabe et al. [6] consid-
ered the k-mutual exclusion problem for arbitrary fixed
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k. They defined different generalizations of coteries and
showed algorithms for the k-mutual exclusion problem
based on each one.

In this paper, we consider a problem called the gen-
eralized mutual exclusion problem, in which each pro-
cess may have different accessible resources. This prob-
lem is defined by Kakugawa and Yamashita [4]. They
proposed an algorithm for this problem based on a new
class of coteries, called local coteries.

In the generalized mutual exclusion problem, if two
processes have no common accessible resource, it is rea-
sonable to ensure a condition in resource allocation,
which is called allocation independence in this paper,
i.e., resource allocation to those processes must be per-
formed without any interference. However, the algo-
rithm proposed in [4] does not ensure this condition.

In order to ensure the allocation independence, we
introduce a new class of coteries, called sharing struc-
ture coteries. We show that by using a sharing struc-
ture coterie instead of a local coterie, the algorithm
proposed by Kakugawa and Yamashita [4] ensures the
allocation independence. Then, we consider existence
of a sharing structure coterie for any given distributed
system. We show a necessary and sufficient condition of
the existence, where decision problem of the existence
is NP-complete.

Furthermore, we show an algorithm for the gen-
eralized mutual exclusion problem which ensures the
allocation independence, for distributed systems whose
sharing structure coteries do not exist or are difficult
to obtain.

2. Preliminaries

The model of distributed systems and the generalized
mutual exclusion problem are defined as follows.

A distributed system S is a 3-tuple (U ,R, α) ∗∗:
U is a set of processes. Each process has its own
local clock. Every two processes are connected by
a bidirectional communication link. Information ex-
change between the processes is based on message-
passing through the links. The delivery of messages
may have unpredictable finite delay, but the order of
messages is unchanged (i.e., FIFO). All processes and

∗∗In [4], tuple (U ,R, α) is called the sharing structure of
a distributed system.
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links are assumed to be error-free. R is a set of re-
sources. Each resource is shared by one or more pro-
cesses. A resource r is called accessible to process u if
process u is one of the processes that share resource r.
α : U → 2R is a mapping such that α(u) denote the set
of all accessible resources of process u. We assume with-
out loss of generality that for every process u ∈ U there
exists some process v �= u such that α(u) ∩ α(v) �= ∅.
Otherwise, resource allocation for such a process u can
be performed independently.

A generalized mutual exclusion problem of a dis-
tributed system S = (U ,R, α) is to allocate resources
in R according to requests from processes in U such
that the following conditions are satisfied.

• Mutual exclusion: Each resource is accessed by at
most one process at the same time.

• Allocation validity: At any time, each process u
accesses resource r ∈ R only if r ∈ α(u).

The k-mutual exclusion problem can be defined as the
case that |R| = k and α(u) = R for all u ∈ U .

Coterie is introduced in [2] for resource allocation
algorithm of 1-mutual exclusion problem. Coterie Q is
a family of subset of U , i.e., Q ⊆ 2U , that satisfies the
following properties:

• Non-emptiness : ∀q ∈ Q [q �= ∅].
• Minimality: ∀q, r ∈ Q [q ⊆∣∣ r].
• Intersection property: ∀q, r ∈ Q [q ∩ r �= ∅].

An element of a coterie is called a quorum. The coterie-
based algorithm for the resource allocation problem [5],
[9] can simply described as follows: Determine a coterie
Q. Initially, each process has one “permission.” If a
process u wants to access the resource, it arbitrarily
selects a quorum q ∈ Q, and sends a request to each
process in q. Then, u waits to receive a permission
from each process in q, and it accesses the resource.
After the access, u releases the resource and returns
the permission to each process in q. The intersection
property ensure the mutual exclusion condition.

To ensure that the algorithm is deadlock-free and
starvation-free, a priority of requests is introduced [5],
i.e., the request with the smallest timestamp has the
highest priority. Suppose a process u had sent its per-
mission to a process v’s request whose timestamp is
Tv, and v has not received enough permissions, i.e., v
has not accessed the resource. If u receives a request
from a process w which has timestamp Tw < Tv, then
u will ask v to return the permission, and u sends the
permission to w.

Subsequently, coteries are extended for k-mutual
exclusion problem for arbitrary fixed k by Fujita et al.
[1] and Manabe et al. [6].

In the generalized mutual exclusion problem, each
process may have a different set of accessible resources,
i.e., it is allowed that α(u) �= α(v) for any u, v ∈ U .
Kakugawa and Yamashita [4] introduced a new class of

Fig. 1 Distributed system S in Example 1.

coteries, called local coteries. A local coterie {Qu ⊆
2U | u ∈ U} for a distributed system S satisfies the
following properties:

• Non-emptiness : ∀u ∈ U [Qu �= ∅].
• Minimality: ∀u ∈ U , ∀q, r ∈ Qu [q ⊆∣∣ r].
• Intersection property: ∀u, v ∈ U ,

[α(u) ∩ α(v) �= ∅ ⇒ ∀q ∈ Qu, ∀r ∈ Qv [q ∩ r �= ∅]].
They showed an algorithm for constructing a local co-
terie for an arbitrary distributed system S.

Example 1: Consider a distributed system S =
(U ,R, α), where U = {u1, u2, . . . , u5}, R = {r1, r2, . . . ,
r6}, and

α(ui) = {r2i−1, r2i} for i = 1, 2, 3,
α(u4) = {r1, r3, r5}, and
α(u5) = {r2, r4, r6} (see Fig. 1).

A local coterie {Qu ⊆ 2U | u ∈ U} for S obtained by
the algorithm in [4] is shown in the following.

Qui = {{ui, u4, u5}} for i = 1, 2, 3, and
Qui = {{ui, u1, u2, u3}} for i = 4, 5.

The coterie-based algorithm which uses a local
coterie for the generalized mutual exclusion problem
in [4] is similar to the one for the mutual exclusion
problem. Instead of coterie, determine a local coterie
Q = {Qu ⊆ 2U | u ∈ U}. Instead of a permission, a
state list is sent to the requesting process, where the
state list shows that each resource is free or not at
that time. Process u has the right to access to a set
of resources Ru ⊆ α(u) if the following conditions are
satisfied:

• Process u receives a state list from each process in
an arbitrary quorum q ∈ Qu.

• States of all resources in Ru are free in every state
list.

When these conditions are satisfied and u wants to ac-
cess the resources, process u updates the state lists and
sends it back to each process in q. When process u fin-
ished the access of resources, process u sends a message
to each process in q to tell them the access is finished.

However, unnecessary waiting for resource alloca-
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tion among processes might occur. In Example 1, let us
consider the case that only u1 and u2 want to access the
resources at the same time. Since α(u1) ∩ α(u2) = ∅,
these two requests do not block each other. However,
qu1 ∩qu2 = {u4, u5} �= ∅. Thus, u4 and u5 first send the
state list to the higher priority request, say, u1. After
the state list update by u1, the updated state list is
sent to u2 and u2 can access the resources. When there
exist k resources, there can be such a process waiting
chain whose length is O(k), and this waiting is unnec-
essary. It is natural to ensure that there is no such
unnecessary waiting, i.e., the resource allocation must
also satisfy the following condition.

• Allocation independence: If α(u) ∩ α(u′) = ∅ for
u, u′ ∈ U , then resource allocation to u and u′

must be performed without any interference.

3. Sharing Structure Coteries

In this section, we define a new class of coteries, called
sharing structure coteries, which is a subclass of local
coteries. By using a sharing structure coterie instead of
a local coterie, the algorithm proposed in [4] becomes
to ensure the allocation independence condition.

A sharing structure coterie satisfies the three prop-
erties of a local coterie (i.e., non-emptiness, minimality,
and intersection property) and the following additional
property:

• Disjointness property: ∀u, v ∈ U ,

[α(u) ∩ α(v) = ∅ ⇒ ∀q ∈ Qu, ∀r ∈ Qv [q ∩ r = ∅]].
It is clear that if a local coterie satisfies this property,
then the unnecessary waiting mentioned in the previous
section does not occur.

Unfortunately, there exist some distributed sys-
tems that have no sharing structure coteries. In the
following, we consider the necessary and sufficient con-
dition of the existence of a sharing structure coterie for
an arbitrary distributed system.

We show that the following decision problem is NP-
complete. Given an arbitrary distributed system S =
(U ,R, α),

Is there a sharing structure coterie for S ?
In the following, we show that this decision prob-

lem is equivalent to an NP-complete problem called
“COVERING BY CLIQUE” [3].

Definition 1: A clique cover of a graph G = (V, E)
is a collection of subsets V1, . . . , Vk of V such that,

• each Vi induces a complete subgraph of G, and
• for each edge {u, v} ∈ E, there exists some Vi that

contains both u and v.

Given a graph G and a positive integer K ≤ |E|, the

Fig. 2 Sharing graph GS of S.

“COVERING BY CLIQUE” problem is:

Is there a clique cover of G with cardinality
k ≤ K?

Definition 2: For an arbitrary distributed system
S = (U ,R, α), sharing graph GS = (U , ES) of S is
an undirected graph such that

ES = {{u, v} ∈ U × U | u �= v, α(u) ∩ α(v) �= ∅}.

A sharing graph of distributed system in Exam-
ple 1 is shown in Fig. 2. The existence problem of shar-
ing structure coteries is related to “COVERING BY
CLIQUE” problem by the sharing graph GS .

Theorem 3: There exists a sharing structure coterie
for distributed system S = (U ,R, α) if and only if there
exists a clique cover of GS with cardinality at most |U|.

Let Q = {Qu ⊆ 2U | u ∈ U} be a sharing structure
coterie for S. Then, Q′ = {Q′

u ⊆ Qu | u ∈ U , |Q′
u| = 1}

is also a sharing structure coterie for S. Note that all
quorums in Q′ are singletons. We call such a coterie
Q′ a singleton sharing structure coterie. It is clear that
there exists a sharing structure coterie for S if and only
if there exists a singleton sharing structure coterie for S.
From the theorem by Ordman [7] † (also see [8]), there
exists a singleton sharing structure coterie for S if and
only if there exists a clique cover of GS which consists
of at most |U| cliques.

For the distributed system S in Example 1, there is
no sharing structure coterie for S, since it can be easily
verified that all clique covers of GS has cardinality at
least 6.
Example 2: Consider a distributed system S′ =
(U ′,R′, α′), where U ′ = {u1, u2, . . . , u5}, R′ = {r1,
r2, . . . , r6, r7}, and

α′(ui) = {r2i−1, r2i} for i = 1, 2, 3,
α′(u4) = {r1, r3, r5, r7}, and
α′(u5) = {r2, r4, r6, r7}.

The sharing graph GS′ for S′ is shown in Fig. 3. Then,
{{u1, u4, u5}, {u2, u4, u5}, {u3, u4, u5}} is a clique cover
of GS′ . From Theorem 3, a sharing structure coterie
Q = {Qu | u ∈ U ′} for S′ (with the smallest size) can

†The theorem by Ordman [7] is showed for a token sys-
tem which is equivalent to a distributed system using a sin-
gleton sharing structure coterie.
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Fig. 3 Sharing graph GS′ of S′ in Example 2.

be defined as follows. Qui = {qui} for i = 1, 2, . . . , 5
such that

• qui = {ui} for i = 1, 2, 3, and
• qui = {u1, u2, u3} for i = 4, 5.

There also exists some sharing structure coterie
Q = {Qu | u ∈ U ′} for S′ such that some Qu is not
a singleton. One of which can be defined as follows.

• Qu1 = {{u1, u4}, {u1, u5}, {u4, u5}}, and
• Qui = {{ui}} for i = 2, 3, and
• Qui = {q ∪ {u2, u3} | q ∈ Qu1} for i = 4, 5.

4. Algorithm for No Sharing Structure Coterie
Cases

As shown in Theorem 3, there exists some distributed
system which has no sharing structure coterie, and even
if there exists such a coterie, it is sometimes very diffi-
cult to obtain.

In this section, we consider a resource allocation
algorithm for distributed systems whose sharing struc-
ture coterie do not exist or is difficult to obtain.

For any distributed system S = (U ,R, α), suppose
a clique cover C for the sharing structure graph GS such
that |C| > |U| is given. Note that it is not implying that
no sharing structure coterie for S exists. The size of C
need not be minimum for given S. Obtaining such a
clique cover is not difficult, since ES is also a clique
cover in which each clique is a set with two elements
(i.e., endpoints of an edge).

Consider a distributed system S′ = (U ∪V ,R, α′),
where U ∩ V = ∅ and |U ∪ V| = |C|,

α′(u) =
{

α(u) if u ∈ U ,
∅ otherwise.

Then, C is also a clique cover for sharing graph GS′ of
S′, since each v ∈ V is an isolated node in GS′ . The
nodes of V are imaginary nodes and do not access the
resources at all. Thus, Qv can be {∅} for any v ∈ V .

From Theorem 3, there exists a sharing structure
coterie for S′. Thus, by simulating S′ by S, i.e., each
process in V is simulated by a process in U , resource
allocation for S can be performed by the algorithm in
[4] using a sharing structure coterie for S′.

5. Message Complexity

The analysis of the message complexity for this algo-
rithm is the same as the one in [4]. In the best case,
the message complexity for one request is 4|q|, where q
is the smallest quorum. In the worst case, the message
complexity for one request is (7+ |α(u)|)|q′|, where q′ is
the largest quorum. In the following, we show that by
estimating the size of quorums the number of messages
sent using a sharing structure coterie is not larger than
that using a local coterie.

First, we estimate the size of quorums of a local
coterie. By the construction algorithm for local coter-
ies in [4], the size of process u’s quorum, |qu|, satisfies
|qu| = |{v ∈ U | α(u) ∩ α(v) �= φ}|. Precisely, since
u ∈ qu and u does not have to send a message to itself,
the message complexity for one request is 4(|q| − 1) in
the best case, and is (7 + |α(u)|)(|q′| − 1) in the worst
case.

Then, we estimate the size of quorums of a sharing
structure coterie. As shown in the previous section,
any sharing structure coterie can be constructed from
a given clique cover in GS , and the size of u’s quorum
q′u, |q′u|, is the number of cliques which contain u in the
clique cover. Thus, |q′u| is at most the degree of u in Gu,
i.e., |q′u| ≤ |{v ∈ U | v �= u, α(u) ∩ α(v) �= φ}| < |qu|,
i.e., the size of quorum in a sharing structure coterie
is not larger than that in a local coterie. Therefore,
the number of messages sent using a sharing structure
coterie is not larger than that using a local coterie.

6. Conclusion

We have defined a new class of coteries, sharing struc-
ture coteries, for the generalized mutual exclusion prob-
lem. By using a sharing structure coterie, we can con-
struct a resource allocation algorithm which ensures
the allocation independence, i.e., resource allocation for
two processes with no common accessible resource are
performed without any interference. We showed the
existence condition of a sharing structure coterie for an
arbitrary distributed system.

Furthermore, for distributed systems whose shar-
ing structure coteries do not exist or are difficult to
obtain, we showed that the resource allocation can be
performed by the algorithm in [4] using a sharing struc-
ture coterie for a distributed system with imaginary
processes.
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