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1 INTRODUCTION

This paper considers a new type of two-sided matching in which multiple numbers of agents are perfectly

matched on both sides. Such matching can be used between multiple major students and laboratories1.

The students have multiple majors, thus each student si must be matched to ki different laboratories. Each

laboratory li has ci slots to accept students. The total number of slots of laboratories equals the total number

of applications by students. The matching result must be perfect, that is, there must not be a student who

is accepted in less than ki different laboratories. It means that there must not be a laboratory that accepts

less than ci different students. Such a perfect matching problem cannot be solved by existing many-to-

many matching algorithms, since the perfect property, which is a global property, cannot be represented

by the participants’ preferences, which are local properties. This paper gives a DA(Deferred Acceptance)

mechanism to match each student to ki different laboratories without a blocking pair by introducing a

master list of students to resolve ties between students.

The matching problem has been discussed for many years[18]. One-to-one matching was first discussed

and then many-to-one and many-to-many matchings were considered. DA mechanism was proposed to solve

one-to-one matching problem[7].

1In the Faculty of Informatics, Kogakuin University, undergraduate students in the 3rd grade must have seminars in two
different laboratories.
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Many algorithms have been proposed for many-to-one matching problem[6][8][23]. Such a problem is used

for matching between interns and hospitals or students and laboratories, in which each intern or student

is matched to one hospital or laboratory. Each hospital or laboratory accepts many interns or students.

DA-like mechanisms to solve these problems are shown. A master list was introduced to solve a matching

with a minimum quota[6].

There are several works that considers many-to-many matching[1, 4, 5, 11, 13–17, 19, 21, 22]. These works

mainly consider a matching between workers and farms. The preference of each worker is a sequence of a

subset of firms, that is, the number of the match can be arbitrary. These works do not consider the perfect

property and these algorithms cannot be used for this paper’s problem. In [2], many-to-many matching

between students and courses was discussed. However, each course has no preference among students, thus

the algorithm cannot be used for this paper’s problem. In [3], many-to-many matching between students

and courses with each course’s preference was discussed, although the perfect property was not considered.

Many-to-many matching when the preference has max-min property was shown in [9, 12]. The max-min

preference differs from the preference defined in this paper.

Another type of many-to-many matching is the case when the agents are not divided into disjoint sets

(like students and laboratories). Matching for such cases were considered[10, 20].

In many-to-one matching problems, the perfect property can be introduced by setting all laboratories to

accept up to the number of the laboratory’s capacity. However, as shown in section 2, the perfect property

in a many-to-many matching problem cannot be represented by each laboratory/student’s local preference.

A naive algorithm might result in a matching in which a student is matched to a laboratory multiple times.

Avoiding such infeasible matching is necessary to obtain a perfect many-to-many matching. This paper

shows a new DA mechanism to solve the many-to-many perfect matching. The algorithm uses a master

list to resolve ties between students. Section 2 shows the definition of the problem. Section 3 shows the

matching algorithm and its correctness proof. Section 4 concludes the paper.

2 PROBLEM DEFINITION

S = {s1, s2, . . . , sm} is the set of students. m = |S| is the number of students. L = {l1, l2, . . . , ln} is the set

of laboratories. n = |L| is the number of laboratories. Each student has a preference over L. l ≻si l
′ means

student si prefers l than l′. The preference of each student has no ties, thus all laboratories are strictly

ranked by each student.

Each laboratory has a preference over S. s ≻li s′ means laboratory li prefers s than s′. The preference

of each laboratory has no ties, thus all students are strictly ranked by each laboratory.

Each laboratory li(1 ≤ i ≤ n) has its capacity ci(1 ≤ i ≤ n). 0 < ci ≤ m(1 ≤ i ≤ n) must be satisfied. If

ci > m, no feasible matching exists.

Each student si(1 ≤ i ≤ m) has its applies ki(1 ≤ i ≤ m). 0 < ki ≤ n(1 ≤ i ≤ m) must be satisfied. If

ki > n, no feasible matching exists.

The number of slots must satisfy the following equation:
∑n

i=1 ci =
∑m

i=1 ki. Thus, there are no extra

slots in each laboratory.

The student and laboratory’s preferences are defined for a single element. Since a many-to-many matching

is executed, we need to define each student and laboratory’s preference over multiple assignment results.

This paper assumes the following simple preference for sets of elements. Consider student si’s two matching
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result α = (la1 , la2 , . . . , laki
) and β = (la′

1
, la′

2
, . . . , la′

ki
), in which the laboratories are sorted as laj ≻si laj+1

and la′
j
≻s la′

j+1
(1 ≤ j ≤ ki − 1). The two results satisfy α ≻si β if and only if there is some d(1 ≤ d ≤ ki)

that satisfies laj = la′
j
for all j < d and lad ≻si la′

d
, that is the same as the lexicographic order ,which

is the same as the one in [2]. Each laboratory has the same preference for a set of students. Note that in

the many-to-one matching in [6], this preference for sets of students or interns is implicitly assumed as the

laboratory or hospital’s preference.

We introduce a master list ML to break ties between students. ML is a sequence of S’s elements, for

example, the order decided by the grades of examinations. The usage of ML is shown later. Note that

without loss of generality, the index of S is changed so that [s1, s2, . . . , sm] is ML.

A many-to-many perfect matching between S and L is µ : S ∪ T → 2S∪L that satisfies the following

properties.

(1) µ(si) ⊆ L and µ(li) ⊆ S.

(2) si ∈ µ(lj) if and only if lj ∈ µ(si).

(3) |µ(si)| = ki for any si ∈ S.

(4) |µ(li)| = ci for any li ∈ L.

A matching that satisfies the first and the second property but does not satisfy the third or the fourth

property is called an infeasible matching. A matching that satisfies all the conditions is called feasible.

Note that there are problem instances that have no feasible matching. Such a problem is called an

infeasible problem instance. An example of an infeasible problem instance is shown below.

(Example 1) m = 6, n = 4, c1 = c2 = 5, c3 = c4 = 1, k1 = k2 = k3 = 3, k4 = k5 = k6 = 1.

The procedure to check feasibility is shown below. A problem instance is feasible if and only if the return

value va = 0. In an infeasible matching, a student is assigned to multiple slots in the same laboratory.

Thus, a matching that avoids an infeasible result is obtained by a procedure that the student with the

larger number of applies and the laboratory with the larger number of remaining slots are matched.

Algorithm 1 Feasibility check procedure

1: procedure feasible(L) /* The students are renamed by the decreasing order of ki. */
2: va = 0 /* the number of unassigned slots */
3: for i = 1 to m do
4: Let x be the number of laboratories with at least one remaining slot.
5: y = min(x, ki)
6: va = va+ (ki − y)
7: Delete one slot for each of y laboratories with the larger number of remaining slots.
8: end for
9: return(va) /* the number of unassigned slots */

10: end procedure

Let us execute the feasibility check procedure for Example 1. Since k1 = 3, one slot of l1, l2, and l3 are

removed. Since k2 = 3, one slot of l1, l2, and l4 are removed. At this instant, the remaining slots of l1 and l2

are 3. The remaining slots of l3 and l4 are 0. Thus, it is impossible to assign s3 with k3 = 3. va becomes 1.

The remaining students s4, s5, and s6 can be assigned thus the return value va = 1. This problem instance

is detected as infeasible.

3



AISS 2022, Nov. 25–27, 2022, Sanya, China Musashi Takanezawa and Yoshifumi Manabe

In the rest of the paper, we assume that the given problem instance is feasible.

A many-to-many perfect matching µ is stable if there is no pair of student and laboratory (s, l) that

satisfy the following conditions.

• s ̸∈ µ(l).

• There is a pair (s′, l′) that satisfy the following conditions: s ≻l s
′, l ≻s l′, s′ ∈ µ(l), s ∈ µ(l′), and

swapping the matching from (s, l′) and (s′, l) to (s, l) and (s′, l′) results in a feasible matching.

(s, l) is called a blocking pair. We call (s′, l′) a supporting pair of the blocking pair. The condition means

that s and l prefer each other over the currently matched one. The difference between the definition of a

blocking pair in the usual one-to-one matching [7] is that the new matching result must be feasible.

3 MATCHING ALGORITHM USING MASTER LIST

DA mechanism obtains a matching that has no blocking pair for one-to-one matching and many-to-one

matching, since each person applies to the best one and each person in the opposite side accepts the best

one(s). We can consider the following standard DA mechanism for many-to-many matching by generating

ki agents for each student, but the mechanism does not work well, as shown below.

Algorithm 2 Standard DA mechanism that does not work well

1: Each student si makes ki agents si,0, si,1, . . . si,ki−1. Agent si,x applies to si’s (x + 1)-th preferred
laboratory.

2: The algorithm terminates if the number of applicants in each laboratory li is ci.
3: Each laboratory lj tentatively accepts its most preferred set of agents up to ci. lj rejects the rest of the

agents.
4: Each rejected agent applies to the most preferred laboratory that no agent of the same student has

applied to.
5: Goto step 2.

(Example 2) n = 4, m = 4, c1 = c2 = c3 = c4 = 3, k1 = k2 = k3 = k4 = 3, Every student’s preference:

l1 ≻ l2 ≻ l3 ≻ l4. Every laboratory’s preference: s1 ≻ s2 ≻ s3 ≻ s4.

Execute Algorithm 2 to this example. s1,0, s2,0, s3,0, and s4,0 apply to l1. s1,1, s2,1, s3,1, and s4,1 apply to

l2. s1,2, s2,2, s3,2, and s4,2 apply to l3. l1 rejects s4,0. l2 rejects s4,1. l3 rejects s4,2. s4,0 applies to l4. Now

there are two unaccepted agents s4,1 and s4,2. These agents are called vacant agents. There are two vacant

slots in l4, but l4 cannot accept these agents since s4 are assigned multiple times to l4 and it is not a feasible

matching. Thus, the standard DA mechanism does not work well.

If we apply the T-algorithm for many-to-many matching in [4], the perfect property cannot be represented

by each player’s preference. The result is µ(s1) = µ(s2) = µ(s3) = {l1, l2, l3} and µ(s4) = {l4}. Thus, the
vacant slots remain and the matching is not perfect.

Some students must be accepted by a special rule to avoid infeasible results. We introduce a master list

ML to solve the problem. ML is a sequence of students, for example, the students are ordered by the

increasing order of scores of examinations. If it is impossible to assign all students using standard DA-

mechanism, the assignment of some number of agents is restricted to make a feasible result. Such agents

are called restricted agents. The other agents are called free agents. The restricted agents are decided using

ML in the round-robin manner. For example, if m = 4, ML = [s1, s2, s3, s4], k1 = 1, k2 = k3 = k4 = 5
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and 6 restricted agents are needed, one agent of s1, two agents of s2 and s3, and one agent of s4 become

the restricted agents. Since s1 have one agent, it is impossible to have two restricted agents. Thus, another

student in ML has more restricted agents instead of s1. The restriction is set not for a student but for an

agent, since restricting all agents of a student seems to be too punishing for the student.

The new algorithm is shown in Algorithms 3 and 4.

Algorithm 3 subroutine DA

1: procedure DA(L, Lv) /* L and Lv are sets of laboratories and Lv ⊂ L. */
2: Each student si makes ki agents si,0, si,1, . . . si,ki−1.
3: Each free agent applies to the most preferred laboratory in L.
4: Each restricted agent applies to the most preferred laboratory in Lv.
5: repeat
6: Each laboratory lj whose applicants are more than its capacity cj rejects the agents using lj ’s

preference so that the number of applicants becomes cj .
7: li (temporally) accepts all agents that are not rejected.
8: Each rejected agent si.j applies to the next most preferred laboratory.
9: If an agent is rejected by all laboratories, the agent becomes vacant.

10: until All agents become accepted or vacant.
11: Let L′ be laboratories that have vacant slots and L′ ∩Lv = ϕ. Let va be the number of vacant slots

in L′.
12: return(L′, va)
13: end procedure

The outline of the procedure is as follows. First, execute a DA mechanism just like the one in Algorithm

2. The result might have vacant slots shown as in Example 2. Let the laboratories with vacant slots be Lv.

Let esum be the number of vacant slots. In the next round, esum agents become restricted agents. They are

forced to apply only to Lv to fill the vacant slots. The agents are selected using ML. Students are selected

one by one from the top of ML in the round-robin manner. For the selected student, one agent is set to a

restricted agent. However, there are cases when the restriction is not effective. The first case is the student

has a vacant agent. Even if the vacant agent becomes a restricted agent, the agent does not fill the vacant

slot. The second case is an agent that is accepted by Lv. The agent does not fill the vacant slot even if the

agent becomes a restricted agent. In the other case, that is, an agent is accepted by L−Lv, the restriction

might fill a vacant slot, thus the restriction is effective. The i-th restriction to student s is effective if the

total numbers of s’s vacant agents and s’s agents accepted by Lv is less than i−1. If a restriction is effective,

count up the variable e. The restrictions are added until e becomes esum. Note that the restriction might

not always work well in the next round, since the newly available slots in L − Lv might be filled by some

agents other than the vacant agents and the vacant agents might be still vacant in the next round. Such a

case is shown below in Example 2.

With the restricted preference list for some agents, the DA algorithm is executed again. The restricted

agent applies only to Lv. Each laboratory’s preference is changed as follows: for a free agent and a restricted

agent of the same student, the laboratory prefers the restricted agent. Since the free agent might be accepted

by some other laboratory in L− Lv, rejecting a free agent will result in a better result for the student.

The possible assignment results of the z(> 1)-th round are categorized into the following three cases.

The first one is an enlargement of Lv. Some agents are forced to apply to Lv, thus the vacant agents are
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Algorithm 4 Many-to-many perfect matching algorithm

1: procedure many-to-many-matching(L) /* L: set of laboratories. */
2: Set all agents as free.
3: Lv = ϕ;
4: esum = 0;
5: z = 1; /* Round 1. */
6: repeat
7: (L′, va) = DA(L, ϕ);
8: if z = 1 and L′ = ϕ then terminate; /* matching is obtained */
9: end if

10: if va > 0 then
11: Lv = Lv ∪ L′;
12: else/* va = 0 */
13: va = feasible(Lv) ;
14: end if
15: if va > 0 then
16: esum = esum+ va;
17: e = 0;
18: repeat
19: Select student si from ML one by one in the round-robin manner.
20: One agent in si (if such an agent is available) becomes restricted. /* must apply to Lv */
21: If the restriction is effective, set e = e+ 1;
22: /* The definition of effectiveness is shown in sentences below */
23: until e = esum
24: z = z + 1; /* next round */
25: end if
26: until va = 0 /* no enlargement of Lv and Lv is feasible */
27: many − to−many −matching(Lv); /* execute for Lv */
28: end procedure

accepted by a laboratory l ∈ L − Lv, but there are new vacant slots in l. Such a case is shown below in

Example 3. In the case, new vacant laboratory Lv becomes Lv ∪ {l}. With the change, execute the same

procedure again.

The second case is no enlargement of Lv, but the restriction is not enough. Execute a feasibility test for

Lv with the agents currently accepted by Lv and vacant agents. If the current agents are not feasible for

Lv, we need to force more agents to apply to Lv. Count the number of necessary agents that must be forced

to apply to Lv. Note that in the making of the restriction, the condition to decide a restriction is effective

or not differs from the first round, in which there is no restricted agent in the previous round. The decision

algorithm from the second round is as follows. First, order the agents in the following manner: the top is

restricted agents, the second is free vacant agents, and the third is free agents accepted by Lv, and the last

is free agents accepted by L− Lv. When an agent is set as a restricted agent (note that a restricted agent

in the previous round is set restricted again) by the following rule:

(1) Until the number of agents restricted in the previous round: the restriction is effective.

(2) Beyond (1), until the total numbers of vacant agents and free agents accepted by Lv: the restriction is

not effective.

(3) Beyond (2) (agents accepted by L− Lv): the restriction is effective.
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Note that this condition is optimistic and the restrictions in Case (1) might not be effective, since the

restriction in the previous round might be set to an agent accepted by Lv. If the number of restrictions is

not enough, the feasibility test fails in the next round and more restrictions are set. Such a case is shown

in Example 3 below.

The last case is the feasibility test succeeds. The feasibility test is executed with Lv, the agents accepted

by Lv, and vacant agents. In this case, execute the assignment again for Lv with the agents. The procedure

is just the same as the original procedure since all agents must apply to Lv. Thus, a recursive execution is

enough to solve the subproblem.

Execute the procedure to Example 2.

(Example 2 with ML) n = 4, m = 4, c1 = c2 = c3 = c4 = 3, k1 = k2 = k3 = k4 = 3, Every student’s

preference: l1 ≻ l2 ≻ l3 ≻ l4. Every laboratory’s preference: s1 ≻ s2 ≻ s3 ≻ s4. ML = [s1, s2, s3, s4].

(First round) Each agent applies according to the preference and each laboratory accepts according to

the preference. Thus, l1, l2, and l3 accept one agent of s1, s2 and s3. Agents of s4 are rejected from all of l1,

l2, and l3. l4 accepts one agent of s4. The remaining two agents of s4 become vacant, since the remaining

slots are in l4. Therefore, Lv = {l4} and va = 2.

Thus, two agents are restricted to apply to Lv. From ML, one agent of s1 and s2 becomes the restricted

agents. With the restrictions, execute the next round.

(Second round) All agents of s3 and s4, and two agents of s1 and s2 apply according to the preference.

One agent of s1 and s2 must apply to l4. Thus, l1 and l2 accepts one agent of s1, s2, and s3. l3 accepts one

agent of s3 and s4. l4 accepts one agent of s1, s2, and s4. One of s4’s agents becomes a vacant agent. There

is one vacant slot in l3. Thus, the vacant laboratory set is increased, that is, L′ = {l3} and va = 1.

After the second round, Lv = {l3, l4} and esum = 2 + 1 = 3. Thus, three agents must be restricted to

apply to Lv. Using ML, one agent is considered from s1, s2, and so on. s1 already has one restricted agent,

thus this agent is restricted to new Lv and e is increased. s2 already has one restricted agent, thus this

agent is restricted to new Lv and e is increased to 2. s3 has one free agent accepted by Lv, thus even if

this agent is restricted, vacant slots will not be decreased. Thus e is unchanged, but anyway, one agent in

s3 becomes a restricted agent. s4 has a vacant agent, thus even if this agent is restricted, vacant slots will

not be decreased. Thus e is unchanged, but anyway, one agent becomes a restricted agent. Every student

in ML is used, thus next we consider s1 again. One additional s1’s agent becomes a restricted agent. One

agent of s1 is accepted by L − Lv, thus this restriction is effective and e is increased. e = esum = 3, thus

the restrictions are finished.

(Third round) Two agents of s1, one agent of s2, s3, and s4 must apply to {l3, l4}. All the other agents

apply according to their preferences. Thus, l1 accepts one agent of s1, s2 and s3. l2 accepts one agent of s2,

s3 and s4. l3 accepts one agent of s1, s2 and s3. l4 accepts one agent of s1 and s4. One agent of s4 becomes

vacant.

There is no new vacant laboratory. In addition, the set of agents accepted by Lv and vacant agents are

two of s1, one of s2, one of s3, and two of s4. This agent set is feasible for Lv. Thus, execute the original

procedure with Lv and these agents.

(Fourth round(First round of subset assignment)) The assignment of L − Lv is fixed and not changed

anymore. Now, set new L as {l3, l4} and execute the original procedure. The first round of this procedure
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is just the same as in the previous round and l3 accepts one agent of s1, s2, and s3. l4 accepts one agent of

s1 and s4. One agent of s4 becomes vacant.

Thus, in this execution, new Lv = {l4} and va = 1. A new restriction is necessary. Use ML from the

beginning again. s1 has a free agent accepted by Lv, thus the agent is restricted but e is unchanged. s2 has

a free agent accepted by L− Lv, thus this agent is restricted and set e = 1. The restriction is finished.

(Fifth round (Second round of subset assignment)) Execute again with this restriction. One agent of s1

and s2 must apply to l4. l3 accepts one agent of s1, s3, and s4. l4 accepts one agent of s1, s2, and s4.

The final assignment is as follows: µ(l1) = {s1, s2, s3}, µ(l2) = {s2, s3, s4}, µ(l3) = {s1, s3, s4}, µ(l4) =

{s1, s2, s4}.
(Example 3) n = 4, m = 6, c1 = c2 = 2, c3 = c4 = 4, k1 = k2 = 2, k3 = k4 = 1, k5 = k6 = 3. s1, s2,

s3, s5, s6’s preference: l1 ≻ l2 ≻ l3 ≻ l4. s4’s preference: l1 ≻ l2 ≻ l4 ≻ l3. Every laboratory’s preference:

s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6. ML = [s1, s2, s3, s4, s5, s6].

(First round) All agents apply according to their preferences. l1 accepts one agent of s1 and s2. Similarly,

l2 accepts one agent of s1 and s2. l3 accepts one agent of s3, s5, and s6. l4 accepts one agent of s4, s5, and

s6. l3 and l4 have one vacant slot. s5 and s6 have one vacant agent. Thus, Lv = {l3, l4} and va = 2.

Using ML, s1 and s2 have one agent restricted to Lv.

(Second round) One agent of s1 and s2 apply to l1 and they are accepted. One agent of s3 and s4 apply

to l2 and they are accepted. One agent of s1 and s2 apply to l3 and they are accepted. l3 accepts one agent

of s5 and s6. l4 accepts one agent of s5 and s6. l4 has two vacant slots. s5 and s6 have one vacant agent.

Lv is unchanged. Since the agents accepted by Lv and vacant agents form an infeasible problem of Lv

assignment, va=2, thus esum = 4 and two more additional restricted agents are necessary. One agent of

s1, s2, s3, and s4 must be restricted to Lv.

(Third round) One agent of s1 and s2 apply to l1 and they are accepted. One agent of s5 and s6 are

accepted by l2. One agent of s1, s2, s3, and s5 are accepted by l3 l4 accepts one agent of s4, s5 and s6. s6

have one vacant agent.

Though there is a vacant slot, the agents accepted by Lv and the vacant agents form a feasible problem

of Lv assignment. Thus no additional restrictions are necessary.

(Fourth round(First round of subset assignment)) The assignments of L−Lv are not changed any more.

The assignment of new L = {l3, l4} is executed using the same routine, but the first round is just the

same as in the third round and l3 accepts one agent of s1, s2, s3 and s5. l4 accepts one agent of s4, s5 and

s6. s6 have one vacant agent.

Thus, new Lv = {l4}, va = 1, and one agents must be restricted. Using ML from the beginning and one

agent of s1 become restricted.

(Fifth round (Second round of subset assignment)) One agent of s1 must apply to l4. l3 accepts one agent

of s2, s3, s5, and s6. l4 accepts one agent of s1, s4, s5, and s6.

The final assignment is as follows: µ(l1) = {s1, s2}, µ(l2) = {s5, s6}, µ(l3) = {s2, s3, s5, s6}, µ(l4) =

{s1, s4, s5, s6}.
As shown above, we need to force some agents not to apply to their prefer laboratories, thus the matching

result is not stable. For example, in the result of Example 2, s1 and l2 prefer (s1, l2) and (s2, l3) than current

pairs (s2, l2) and (s1, l3). Since s1’s agent accepted by l3 is a restricted agent, such cases are inavoidable to

obtain a feasible result.
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Instead, we define many-to-many justified stability using agents and their restriction statuses. Each agent

has a type whether it is free or restricted. Since the algorithm is executed to L1(= L), L2, . . . , Lα so that

Li+1 ⊂ Li(1 ≤ i ≤ α− 1) and the type is given in each execution, the type of each agent becomes a tuple

(t1, t2, . . . , tα), where ti = free or restricted in the last round of Li’s assignment. An agent accepted by

a laboratory in Li − Li+1 is not involved in the assignment of Li+1. For such cases, let tj(j > i) = ⊥.

Let ti(s) be the i-th element of agents’s type. In Example 2, the three agents of s1 have types (free,⊥),

(restricted, free), and (restricted, restricted)

A many-to-many matching µ is justified stable if there is no pair of agent and laboratory (si,j , l) that

satisfy the following conditions.

• si,j ̸∈ µ(l).

• There is a pair (si′,j′ , l
′) that satisfy the following properties: si ≻l sj , l ≻si l′, si′,j′ ∈ µ(l),

l′ = µ(si,j), and swapping the matching (si,j , l
′), (si′,j′ , l) to (si,j , l), (si′,j′ , l

′) results in a feasi-

ble matching.

• For some k, tk(si,j) = free and tk(si′,j′) ̸= ⊥ or tα(si,j) = tα(si′,j′) = restricted.

The agents of a blocking pair and its supporting pair must be restricted to the above conditions. As for

the previous example, the type of s1’s agent accepted by l3 is (restricted, free) and the type of s2’s agent

accepted by l2 is (free,⊥) thus the pair of these agents is not the agent of a blocking pair (s1’s agent) and

its supporting pair (s2’s agent).

Before showing that the matching is justified stable, we need to show some properties used for the proof.

First, we show the properties related to enlargements of Lv.

Lemma 3.1. The number of vacant slots never increases during the iterations.

(Proof) Introducing new restricted agents temporary makes unoccupied slots in L − Lv. The slots are

occupied by (1)vacant agents or (2)free agents in Lv Case (1) decreases the number of vacant slots, though

case (2) does not change the number of vacant slots. □
Note that the procedure terminates increasing the restricted agents when the feasibility test succeeds.

Lemma 3.2. The enlargement of Lv eventually terminates before Lv becomes L.

(Proof) When an agent in L−Lv is newly set as a restricted agent, there is a temporal vacant slot. The

slot must be filled by some other agent. The possible cases are (1)vacant agent and (2)free agent in Lv.

When (1) occurs, the number of vacant slots is decreased. When (2) occurs, the number of vacant slots

is unchanged. When (1) occurs, there can be vacant slots outside of Lv and the enlargement of Lv might

occur.

When a new student that had no vacant slots in the previous round has a vacant slot outside of Lv,

the agent must be rejected by all laboratories, thus it must be rejected by all laboratories in Lv. Since the

number of the restricted agents is set so that there is no overflow of agents in Lv occurs, it does not occur

that an agent is newly rejected from all laboratories in Lv. Thus, when an enlargement of Lv occurs, the

vacant agents are the ones in the first iteration (z = 1).

The size of Lv might increase during the iteration, but the size of Lv does not become to be equal to

L. Since the student with a vacant agent has one agent accepted by each laboratory in Lv, Lv = L means

9
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that every laboratory has one accepted agent and there is at least one additional vacant agent. It is a

contradiction that ki ≤ n for any student. □
Next, we show that the feasibility test eventually succeeds.

Lemma 3.3. After the enlargement of Lv is finished, eventually the feasibility test succeeds in Lv.

(Proof) After the enlargement of Lv is finished, if Lv is not feasible, new restrictions are set so that the

number of accepted agents in Lv increases. If the number of restricted agents becomes the total number of

slots, Lv becomes a feasible problem. Thus, the restriction adding also eventually terminates. □
Note that since the restriction is set to the students in a round-robin manner, the restriction does not

result in an infeasible problem such that the number of restricted agents of a student becomes more than

|Lv|.
For the types of agents, the following property holds.

Lemma 3.4. If ti(s) = free, ti+1(s) is free or ⊥.

(Sketch of proof) Since the number of vacant slots in Li+1 is less than that in Li, the number of restricted

agents in Li+1’s assignment is less than that in Li. □

Theorem 3.5. The matching given by the procedure has no justified blocking pair.

(Proof) Let l′ be the laboratory si,j is accepted. Suppose that there is a pair (si,j , l) and (si′,j′ , l
′) that

satisfies the condition of the justified blocking pair and its supporting pair.

(Case 1) For some k, tk(si,j) = free and tk(si′,j′) ̸= ⊥.

(Case 1-1) tk(si,j) is accepted by Lk − Lk+1.

If l ∈ Lk − Lk+1, such a blocking pair does not exist since the last assignment of Lk is executed by the

DA mechanism.

If l ∈ Lk+1, since there were vacant slots in Lk+1 in the previous rounds, si,j would have applied to l in

a previous round and the application is accepted. Thus, such a pair does not exist.

(Case 1-2) tk(si,j) is accepted by Lk+1.

Since tk′(si,j) is free or ⊥ for k′ > k, si,j will be accepted by no worse laboratory for the agent in the

further recursive assignments. The reason is as follows. In the first round of the assignment of Lk+1, (in

which all agents become free) the result is the same and in the further rounds, some other agents become

restricted, thus the result might become better for si,j .

If l ∈ Lk − Lk+1, such a blocking pair does not exist since the last assignment of Lk is executed by the

DA mechanism and further assignments for si,j are no worse than the one in the last assignment of Lk.

If l ∈ Lk+1, tk(si′,j′) is free or restricted. In the assignments in Lk+1, si,j remains free and si′,j′ is

free or restricted. Thus, by the argument of (Case 1-1), the result does not have a justified blocking pair.

(Case 2) tα(si,j) = tα(si′,j′) = restricted.

There is no more recursion. In the last round of assignment of Lα, the assignment is done by the DA

mechanism and both agents are restricted agents. Thus, the result does not have a justified blocking pair.

□
The time complexity of the algorithm is polynomial of

∑
i ki, the total number of slots. The number of

rounds is less than n and the number of recursive executions is less than n. The time complexity of each

execution of DA is at most O(n ∗
∑

i ki). Thus the complexity is at most O(n3 ∗
∑

i ki).
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4 CONCLUSION

This paper discussed the many-to-many perfect matching problem, which can be used as a matching between

multiple major students and laboratories. We showed the DA mechanism that uses ML as a tie-breaking be-

tween students. One further study is a relaxed problem in which some number of vacant slots in laboratories

are allowed, but students must be assigned to a fixed number of different laboratories.
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