
Malicious Player Card-based Cryptographic
Protocols with a Standard Deck of Cards Using

Private Operations

No Author Given

No Institute Given

Abstract. This paper shows new card-based cryptographic protocols to
calculate Boolean functions using a standard deck of cards when the play-
ers are malicious. Card-based cryptographic protocols use physical cards
instead of computers. They can be used when the software on computers
is not reliable. We discuss protocols that use a standard deck of cards be-
cause it is easy to prepare. Though protocols that use private operations
tend to be efficient in the number of cards used in the protocols, mali-
cious actions are possible during private operations. This paper shows
three-player protocols to prevent malicious actions by watching another
player’s actions. We show logical AND, XOR, and copy protocols since
any Boolean functions can be realized by a combination of the protocols.
The numbers of cards used by the protocol are the minimum.

Keywords: card-based cryptographic protocols · Boolean functions ·
malicious players · standard deck of cards · multi-party secure computa-
tion.

1 Introduction

Card-based cryptographic protocols [15,37,39] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used or users cannot trust the software on the
computer. Also, the protocols are easy to understand, thus the protocols can
be used to teach the basics of cryptography [5, 31]. den Boer [3] first showed
a five-card protocol to securely calculate the logical AND of two inputs. Since
then, many protocols have been proposed to realize primitives to calculate any
Boolean functions [8, 13, 19, 23, 40, 50, 60] and specific computations such as a
class of Boolean functions [2, 24, 27, 32, 36, 45, 46, 48, 53, 56, 58, 64, 66], million-
aires’ problem [28,42,49], realizing Turing machines [7,18], voting [34,43,47,65],
random permutation [9,11,12,41], grouping [10], ranking [62], lottery [61], proof
of knowledge of a puzzle solution [4, 6, 22, 29, 30, 52, 54, 55, 57], and so on. This
paper considers calculations of logical AND and logical XOR functions and copy
operations since any Boolean function can be realized with a combination of
these calculations.

Most of the above works are based on a two-color card model. In the two-
color card model, there are two kinds of cards, ♣ and ♡ . Cards of the same

2 No Author Given

marks cannot be distinguished. In addition, the back of both types of cards is
? . It is impossible to determine the mark in the back of a given card of ? .
Though the model is simple, protocols using the two-color card model cannot be
realized as it is using one standard deck of playing cards. Some helping cards are
necessary to execute using a standard deck of playing cards. On the other hand,
card-based cryptographic protocols using a standard deck of playing cards and
their formal security proofs were shown [14, 16, 20, 21, 25, 33, 44, 59]. Protocols
to calculate AND, copy, and XOR using private operations using a standard
deck of cards were shown [25]. Private operations are executed where the other
players cannot see, for example, under the table or in the back. Though private
operations are effective in card-based protocols, there is a problem with private
operations. Since the private operations are executed where the other players
cannot see, a player might execute malicious actions during private operations.
For example, a malicious player might see the marks of face-down cards. Another
malicious player might swap the cards to change the values. We need to prevent
or detect such malicious actions.

A countermeasure to the problems is watching private actions and detect
malicious actions. When the protocols are executed by two players, Alice and
Bob, Alice must not see Bob’s private actions. If Alice sees Bob’s private oper-
ations, Alice can see all operations, thus Alice sees the relationship between the
private inputs and the output. If the output cards are opened to see the final re-
sult, Alice can know the private input data from the relationship. Thus, another
player other than two players are necessary to watch the private operations. If
the watcher sees both Alice and Bob’s private operations, the watching player
can know all operations and the relationship between the input data and the
output data. Thus the watching player knows the private data. If we prepare
Alice’s watcher and Bob’s watcher, four players seems to be necessary.

This paper shows that three players are sufficient to detect malicious actions
and keep the protocol secure. In the three-player protocols shown in this paper,
Bob watches Alice’s private operations, Carol watches Bob’s private operations,
and Alice watches Carol’s private operations.

Few works are done for the case when some players are malicious or make
mistakes [1,17,26,35,38,63]. They are categorized into two groups. The first one is
to use additional cards or special items such as envelopes [17,26,63]. The second
type introduces the watching player. The watching player for the protocol with
a two-color card model is shown [26]. Abe et al. showed a three-player majority
voting protocol with a malicious player [1]. Note that the above works are done
for the two-color card model. There is no work for a standard deck of cards. As
long as the author knows, this is the first work that discusses malicious activities
in protocols that use a standard deck of cards and private operations.

In Section 2, basic notations and the private operations introduced in [50] are
shown. Section 3 shows logical AND, copy, and logical XOR protocols. Section
4 concludes the paper.

Title Suppressed Due to Excessive Length 3

2 Preliminaries

2.1 Basic notations

This section gives the notations and basic definitions of card-based protocols
with a standard deck of cards. A deck of playing cards consists of 52 distinct
mark cards, which are named 1 to 52. The number of each card (for example,
1 is the ace of the spade, and 52 is the king of the club) is common knowledge

among the players. The back of all cards is the same ? . It is impossible to

determine the mark in the back of a given card of ? .

One-bit data is represented by two cards as follows: i j = 0 and j i = 1
if i < j.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as ? ?︸ ︷︷ ︸
x

.

The base of a commitment is the pair of cards used for the commitment. If
card i and j (i < j) are used to set commit(x), the commitment is written as

commit(x){i,j} and written as ? ?︸ ︷︷ ︸
x{i,j}

. When the base information is obvious or

unnecessary, it is not written.
Note that when these two cards are swapped, commit(x̄){i,j} can be obtained.

Thus, logical negation can be calculated without private operations.
A set of cards placed in a row is called a sequence of cards. A sequence of

cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card
of the sequence. S = ?︸︷︷︸

s1

?︸︷︷︸
s2

?︸︷︷︸
s3

. . . , ?︸︷︷︸
sn

. A sequence whose length is even is

called an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by three players, Alice, Bob, and Carol. The play-

ers are malicious, that is, they might not obey the rule of the protocols. In the
protocols in this paper, a player watches the private operations executed by an-
other player. If a player misbehaves, the watching player detects the malicious
action and says that the player misbehaved. The misbehaved player has a pun-
ishment for the misbehavior. The detail of the punishment mechanism is out
of the scope of this paper. To avoid punishment, players obey the rule of the
protocols. Note that the watching player does not output a false misbehavior
detection. For the two-color card model, a three-player misbehavior detection
protocol without false alarm detection and a four-player misbehavior detection
protocol with the ability of false alarm detection were shown [50]. In order to
detect false alarms in a standard deck of cards, four players seem to be necessary.
False alarm detection is a further study.

There is no collusion among players, otherwise private input data can be
easily revealed.

The inputs of the protocols are given in a committed format, that is, the
players do not know the input values. The output of the protocol must be given in
a committed format so that the result can be used as input for further calculation.

4 No Author Given

A protocol is secure when the following two conditions are satisfied: (1) If
the output cards are not opened, each player obtains no information about the
private input values from the view of the protocol for the player (the sequence
of the cards opened to the player). (2) When the output cards are opened, each
player obtains no additional information about the private input values other
than the information by the output of the protocol. For example, if the output
cards of an AND protocol for input x and y are opened and the value is 1, the
players can know that (x, y) = (1, 1). If the output value is 0, the players must
not know whether the input (x, y) is (0, 0), (0, 1), or (1, 0).

2.2 Private operations

We show three private operations introduced in [50]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =

{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

In [50], the operation is executed in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =
commit(x){i,j}, given S0 = ? ?︸ ︷︷ ︸

x{i,j}

, The player’s output S1 = ? ?︸ ︷︷ ︸
x⊕b{i,j}

, which is

? ?︸ ︷︷ ︸
x{i,j}

or ? ?︸ ︷︷ ︸
x{i,j}

.

Note that a private random bisection cut is the same as the random bisection
cut [40], but the operation is not executed in public.

Primitive 2 (Private reverse cut)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

In [50], the operation is executed in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

Title Suppressed Due to Excessive Length 5

If a player executes a private random bisection cut to S when the random
bit is b and then executes a private reverse cut using b, the result is S.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =

{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Opaque commitment pair

An opaque commitment pair is defined as a useful situation for to design a secure
protocol using a standard deck of cards [33]. It is a pair of commitments whose
bases are unknown to all players. Let us consider the following two commitments
using cards i, j, i′, and j′. The left (right) commitment has value x (y), respec-
tively, but it is unknown that (1) the left (right) commitment is made using i
and j (i′ and j′), respectively, or (2) the left (right) commitment is made using
i′ and j′ (i and j), respectively. Such a pair of commitments is called an opaque
commitment pair and written as commit(x){i,j},{i

′,j′}||commit(y){i,j},{i
′,j′}.

The protocols in this paper use a little different kind of pair, called semi-
opaque commitment pair. A player thinks a pair is an opaque commitment pair
but another player knows the bases of the commitments. Let us consider the case
when a protocol is executed by Alice and Bob. Bob privately makes the pair of
commitments with the knowledge of x and y. For example, Bob randomly selects
a bit b ∈ {0, 1} and

S =

{
commit(x){i,j}||commit(y){i

′,j′} if b = 0

commit(x){i
′,j′}||commit(y){i,j} if b = 1

then S = commit(x){i,j},{i
′,j′}||commit(y){i,j},{i

′,j′} for Alice. Such a pair is
called semi-opaque commitment pair and written as commit(x){i,j},{i

′,j′}|Alice||
commit(y){i,j},{i

′,j′}|Alice, where the name(s) of the players who think the pair
as a opaque commitment pair is written. Note that a name is not written does
not mean the player knows the bases of the commitments. For example, the
above example says nothing about whether Bob knows the bases or not. Note
that the name of the player is written with the initial when it is not ambiguous.

6 No Author Given

2.4 Space and time complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations [51]. The first round
begins from the initial state. In most protocols, a player initially has all cards,
but the definition assumes general cases when each player initially has some
number of cards. The first round is (possibly parallel) local executions by each
player using the cards initially given to each player. It ends at the instant when
no further local execution is possible without receiving cards from another player.
The local executions in each round include sending cards to some other players
but do not include receiving cards.

The i(> 1)-th round begins with receiving all the cards sent during the (i−1)-
th round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i− 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. We can define the number of rounds and average
rounds. The number of rounds of a protocol is the maximum number of rounds
necessary to output the result among all possible inputs and random values. For
randomized (Las Vegas) protocols, the average round is the average number of
rounds necessary to output the result.

Let us show an example of a protocol execution, its space complexity, and
time complexity with the conventional two-color card model. In the two-color
card model, there are two kinds of marks, ♣ and ♡ . One-bit data is represented

by two cards as follows: ♣ ♡ = 0 and ♡ ♣ = 1.

Protocol 1 (AND protocol in [50])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice sends commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob privately sets

S2 =

{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and sends S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated

in the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3.

The AND protocol realizes the following equation.

x ∧ y =

{
y if x = 1
0 if x = 0

Title Suppressed Due to Excessive Length 7

The correctness of the protocol is shown in [50]. The number of cards is four
since the cards of commit(x′) are re-used to set commit(0).

Let us consider the time complexity of the protocol. The first round ends at
the instant when Alice sends commit(x′) and commit(y) to Bob. The second
round begins with receiving the cards by Bob. The second round ends at the
instant when Bob sends S2 to Alice. The third round begins with receiving the
cards by Alice. The number of rounds of this protocol is three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to send cards between players and
set up so that the cards are not seen by the other players. Thus the number of
rounds is the criterion to evaluate the time complexity of card-based protocols
with private operations. If the local execution needs many operations, for exam-
ple, O(n) operations where n is the size of the problem, we might need another
criterion to consider the cost of local executions.

2.5 Problems with a standard deck of cards

The above AND protocol cannot be executed as it is with a standard deck of
cards.

The protocol uses the property that all ♡ cards (♣ cards) are indistin-
guishable. Even if the final cards are opened to see the result, it is impossible
to know that the opened cards are the cards of commit(y) or commit(0). If it is
possible to detect the above information, the value of x is known to the players.

Consider the case when the encoding rule i j = 0, j i = 1 if i < j is
used to the standard deck of playing cards. Suppose that x = 1 and y = 0.
When two inputs are given as commit(x){1,2} and commit(y){3,4}, commit(0)
and commit(y) are set as commit(0){1,2} and commit(y){3,4}, respectively at
Step 2. Since x = 1, the result is commit(y){3,4}. When the cards are opened
to see the result, the cards are 3 and 4. The players can know that y is selected
as the output, thus x must be 1. This execution also reveals the information of
inputs from the base of the commitments.

When we design a protocol with a standard deck of cards, we must consider
the information leakage from the base of the commitment.

2.6 AND protocol by two semi-honest players

If the players are semi-honest, we can execute AND/XOR/copy protocols using
a standard deck of cards with the minimum number of cards by two players. We
show a base-fixed protocol and AND protocol in [25] since the protocols in this
paper execute the protocols with three players. Note that base-fixed protocols
that do not use private operations were shown in [14,33].

Protocol 2 (Base-fixed protocol) [25]
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.
Output: commit(x){1,2}.

8 No Author Given

1. Bob executes a private random bisection cut on both pairs using two different
random bits br1, br2 ∈ {0, 1}. The result S1 = commit(x⊕ br1)

{1,2},{3,4}||
commit(y ⊕ br2)

{1,2},{3,4}. Bob sends S1 to Alice.
2. Alice executes a private reveal on S1. Alice sees x ⊕ br1 and y ⊕ br2. Alice

makes S2 = commit(x⊕ br1)
{1,2} and sends it to Bob.

3. Bob executes a private reverse cut using br1 on S2. The result is commit(x){1,2}.

Note that input y is a secret value.
In this protocol, Alice knows the bases of the input commitments in Step 2.

The protocol can be used only when this information leakage does not cause a
security problem, for example, the bases are randomly set by Bob. The example
case is as follows. Initially, Bob knows the relation between the bases and the
private input values. If the result is opened and the base becomes public, Bob
knows the private input value from the base of the result. Thus, Bob first ran-
domizes the relation between the bases and the values. Since Bob changed the
base, Bob still knows the relation between the bases and the values, but Alice
cannot know the relation because of the randomization by Bob. Thus, when Al-
ice privately opens the cards, Alice knows no information from the base of the
cards. Alice privately opens the cards and fixes the base of the output. When the
base is fixed, the base of the output becomes unknown to Bob. Therefore, when
the final output is opened, no information about private input value is known
to the players from the base.

Next, we show AND protocol by two semi-honest players. Note that the
protocol is modified from the one in [25]. Though the order of randomizations
is changed, the main idea of the protocol is unchanged.

Protocol 3 (AND protocol by two semi-honest players) [25]
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. Alice sends the results, S1 = commit(x ⊕ a1)

{1,2} and S2 =
commit(y){3,4} to Bob.

2. Bob executes a private reveal on S1. Bob sees x⊕ a1. Bob privately sets

S3,0 =

{
commit(0){1,2}||commit(y){3,4} if x⊕ a1 = 0
commit(y){3,4}||commit(0){1,2} if x⊕ a1 = 1

Bob sends S3,0 to Alice.
3. Alice executes private random bisection cuts on each of pairs in S3,0 using

two distinct random bits a2 and a3. Let the result be S3,1.

S3,1 =

{
commit(0⊕ a2)

{1,2}||commit(y ⊕ a3)
{3,4} if x⊕ a1 = 0

commit(y ⊕ a2)
{3,4}||commit(0⊕ a3)

{1,2} if x⊕ a1 = 1

Alice sends S3,1 to Bob.

Title Suppressed Due to Excessive Length 9

4. Bob randomly selects bit b1 ∈ {0, 1}. Bob reveals S3,1 and exchanges the
bases of the two commitments if b1 = 1. Let the result be S3,2.

S3,2 =

{
commit(0⊕ a2)

{1,2},{3,4}|A||commit(y ⊕ a3)
{1,2},{3,4}|A if x⊕ a1 = 0

commit(y ⊕ a2)
{1,2},{3,4}|A||commit(0⊕ a3)

{1,2},{3,4}|A if x⊕ a1 = 1

Bob sends S3,2 to Alice.
5. Alice executes private reverse cuts on the two pairs of S3,2 using a2 and a3,

respectively. Let the result be S4.

S4 =

{
commit(0){1,2},{3,4}|A||commit(y){1,2},{3,4}|A if x⊕ a1 = 0
commit(y){1,2},{3,4}|A||commit(0){1,2},{3,4}|A if x⊕ a1 = 1

Alice then executes a private reverse selection on S4 using a1. Let S5 be the
result and the remaining two cards be S6. The result S5 = commit(y){1,2},{3,4}|A

if (a1 = 0 and x⊕ a1 = 1) or (a1 = 1 and x⊕ a1 = 0). The condition equals
x = 1.
S5 = commit(0){1,2},{3,4}|A if (a1 = 0 and x ⊕ a1 = 0) or (a1 = 1 and
x⊕ a1 = 1). The condition equals x = 0. Thus,

S5 =

{
commit(y){1,2},{3,4}|A if x = 1
commit(0){1,2},{3,4}|A if x = 0

= commit(x ∧ y){1,2},{3,4}|A

Alice sends S5 and S6 to Bob.
6. Bob and Alice execute Protocol 2 (Base-fixed protocol) to S5||S6. Then they

obtain commit(x ∧ y){1,2}.

The correctness and security of the protocol are shown in [25].

3 AND, XOR, and copy with three malicious players

This section shows our new protocols for AND, XOR, and copy executed by three
malicious players. Any malicious action during private operations is detected by a
watching player, thus the malicious actions are prohibited if there is no collusion
between players.

Bob watches Alice’s operations, Carol watches Bob’s operations, and Alice
watches Carol’s operations. All operations are executed in the following manner.
Initially, all players are in the same room. If the next operation is executed by
Alice, first, Carol exits the room. Then, Alice executes the private operations in
front of Bob. Thus, Bob knows all private values. For example, if Alice executes
a private random bisection cut, Bob knows the random bit Alice selected. If
Alice executes a private reveal, Bob knows the value of the cards Alice opened.
If Alice misbehaves, Bob detects the fact and terminates the protocol execution.
If there is no misbehavior, Alice’s private operations are correctly finished. Then

10 No Author Given

Carol comes back to the room and they execute the next step of the protocol. If
the next private operation is executed by Bob(Carol), Alice(Bob) exits from the
room, Bob(Carol) executes the private operation in front of Carol(Alice), and
Alice(Bob) comes back to the room, respectively.

In the following protocol descriptions, we just write “Alice executes a private
operation” to mean “Carol exits the room, Alice executes a private operation in
front of Bob, and Carol comes back to the room” for simplicity.

Before we show the protocols, we show a subroutine to fix the base of a given
commitment.

3.1 Base-fixed protocol with three players

We show a base-fixed protocol with two inputs commit(x) and commit(y). The
base of commit(x) is fixed to {1, 2}. In the following protocol, the second input
value y is not used as the output, but the value must be kept secret.

The protocol needs private reveals and the values of cards are seen. Before
a player sees a value of commit(x) and sets cards according to the value, the
value must be randomized to hide the value. In the protocol below, Alice sees
the value, thus the value must be randomized by the other players. One-player
randomization is not enough to hide the private value. Suppose that a player
executes a randomization in advance. They obtain commit(x⊕r) and then Alice
executes a private reveal. Since Bob watches Alice’s execution, Bob knows x⊕r.
If the randomization r is executed by Bob, Bob knows r and x⊕r and Bob knows
secret value x. Then consider the case when the randomization is executed by
Carol. Alice watches Carol’s private operation and knows r. Since Alice knows
x ⊕ r and r, Alice knows the secret value x. Therefore, one-player randomiza-
tion is not enough to hide the private value, and two-player randomizations are
necessary. The value must be randomized by Bob and Carol in advance.

Note that the bases of the input commitments are leaked to Alice and Bob
during the execution. The protocol can be used only if the information leakage
does not cause a security problem, for example, the bases are randomly set by
some other player.

Protocol 4 (Three player base-fixed protocol)
Input: commit(x){1,2},{3,4}|A||commit(y){1,2},{3,4}|A.
Output: commit(x){1,2}.

1. Bob executes a private random bisection cut on each pair using two random
bits br1 and br2, respectively. The result S1 = commit(x⊕ br1)

{1,2},{3,4}|A||
commit(y ⊕ br2)

{1,2},{3,4}|A.
2. Carol executes a private random bisection cut on each pair using two random

bits cr1 and cr2, respectively. The result S2 = commit(x⊕br1⊕cr1)
{1,2},{3,4}|A||

commit(y ⊕ br2 ⊕ cr2)
{1,2},{3,4}|A.

3. Alice executes a private reveal on both pairs of S2. Alice makes S3 = commit(x⊕
br1 ⊕ cr1)

{1,2}.

Title Suppressed Due to Excessive Length 11

4. Bob executes a private reverse cut using br1 on S3. The result S4 = commit(x⊕
cr1)

{1,2}.
5. Carol executes a private reverse cut using cr1 on S4. The result is commit(x){1,2}.

Theorem 1. The input values are private in the base-fixed protocol.

Proof. Alice sees x⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Since Alice watches
Carol’s private operations, Alice sees cr1 and cr2 in Step 2. Alice obtains no
information about x and y since br1 and br2 are unknown to Alice.

Bob knows br1 and br2 in Step 1. Since Bob watches Alice’s private oper-
ations, Bob sees x ⊕ br1 ⊕ cr1 and y ⊕ br2 ⊕ cr2 in Step 3. Bob obtains no
information about x and y since cr1 and cr2 are unknown to Bob.

Carol knows cr1 and cr2 in Step 2. Since Carol watches Bob’s private oper-
ations, Carol sees br1 and br2 in Step 1. Carol obtains no information about x
and y. ⊓⊔

3.2 AND protocol

In the following AND, copy, and XOR protocols, the bases of the output com-
mitments are fixed to avoid information leakage from the bases when the outputs
are opened.

The outline to execute by three players is as follows. The protocol in [25] has
two randomizations. The first is the randomization of the bases of the two input
values. The second is the randomization of the input values.

Carol executes private reveals in the following protocol. By the same argu-
ment written in the description of the base-fixed protocol, the value must be
randomized by the other players in advance. Suppose that Alice and Bob use
random bits a and b to randomize x, respectively. After Carol’s private opera-
tion using x ⊕ a ⊕ b, Alice and Bob execute a private reverse cut using a and
b, respectively to undo the randomizations. Such randomizations are executed
before every private reveals in the protocol.

Next, we need to randomize the bases of the two pairs to hide the relation
between the output and inputs. Initially, commit(0) is made using {1, 2} and
commit(y) is made using {3, 4}. Suppose that the output of AND is commit(0).
It means that x = 0. If no base change is executed, the base {1, 2} of the
output reveal x = 0. Thus the randomization of bases is necessary. If the base
randomization is executed by one player, the private information is known to one
player just like the case of randomization of values. Thus the base randomization
must be executed by two players.

The detailed protocol is shown below. Note that for the simplicity of descrip-
tion, we write S⊕b to mean the pair that the left and the right card are swapped
if b = 1. If S = commit(x), S ⊕ b means commit(x⊕ b).

Protocol 5 (Three player AND protocol)
Input: commit(x){1,2} and commit(y){3,4}.
Output: commit(x ∧ y){1,2}.

12 No Author Given

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a1. The result is S1 = commit(x⊕ a1)

{1,2}.

2. Bob executes a private random bisection cut on S1 using random bit b1. The
result is S2 = commit(x⊕ a1 ⊕ b1)

{1,2}.

3. Carol executes a private reveal on S2. Carol sees x ⊕ a1 ⊕ b1. According to
the value, Carol sets S3||S4 as

S3||S4 =

{
commit(0){1,2}||commit(y){3,4} if x⊕ a1 ⊕ b1 = 0
commit(y){3,4}||commit(0){1,2} if x⊕ a1 ⊕ b1 = 1

The cards of S2 are reused to set commit(0).

4. Alice executes a private random bisection cut on S3 and S4 using random
bit a2 and a3, respectively. The result is S3 ⊕ a2||S4 ⊕ a3.

5. Bob executes a private random bisection cut on S3 ⊕ a2 and S4 ⊕ a3 using
random bit b2 and b3, respectively. The result is S3 ⊕ a2 ⊕ b2||S4 ⊕ a3 ⊕ b3.

6. Carol randomly selects bit c1 ∈ {0, 1}. Carol executes private reveals on
the two pairs and exchanges the bases of two pairs if c1 = 1. Then, Carol
executes private random bisection cuts on the two pairs using random bits
c2, c3 ∈ {0, 1}. Let the result be S5||S6 =

commit(0⊕ a2 ⊕ b2 ⊕ c2)
{1,2}||commit(y ⊕ a3 ⊕ b3 ⊕ c3)

{3,4}

if x⊕ a1 ⊕ b1 = 0 and c1 = 0
commit(0⊕ a2 ⊕ b2 ⊕ c2)

{3,4}||commit(y ⊕ a3 ⊕ b3 ⊕ c3)
{1,2}

if x⊕ a1 ⊕ b1 = 0 and c1 = 1
commit(y ⊕ a2 ⊕ b2 ⊕ c2)

{3,4}||commit(0⊕ a3 ⊕ b3 ⊕ c3)
{1,2}

if x⊕ a1 ⊕ b1 = 1 and c1 = 0
commit(y ⊕ a2 ⊕ b2 ⊕ c2)

{1,2}||commit(0⊕ a3 ⊕ b3 ⊕ c3)
{3,4}

if x⊕ a1 ⊕ b1 = 1 and c1 = 1

7. Bob executes private reveals on S5||S6. Bob randomly selects bit b4 ∈ {0, 1}.
Bob exchanges the bases of the two commitments if b4 = 1. Then Bob ex-
ecutes private reverse cuts on the pairs using b2 and b3, respectively. The
result is

commit(0⊕ a2 ⊕ c2)
{1,2}||commit(y ⊕ a3 ⊕ c3)

{3,4}

if x⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0⊕ a2 ⊕ c2)

{3,4}||commit(y ⊕ a3 ⊕ c3)
{1,2}

if x⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2)

{1,2}||commit(0⊕ a3 ⊕ c3)
{3,4}

if x⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y ⊕ a2 ⊕ c2)

{3,4}||commit(0⊕ a3 ⊕ c3)
{1,2}

if x⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

8. Carol executes private reverse cuts on the pairs using c2 and c3, respectively.

9. Alice executes a private reverse cut on each of the pairs using a2 and a3,
respectively.

Title Suppressed Due to Excessive Length 13

Let S7||S8 be the result after the two private reverse cuts. S7||S8 =
commit(0){1,2}||commit(y){3,4} if x⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x⊕ a1 ⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x⊕ a1 ⊕ b1 = 1 and c1 ⊕ b4 = 0

Alice then executes a private reverse cut using a1. The result is
commit(0){1,2}||commit(y){3,4} if x⊕ b1 = 0 and c1 ⊕ b4 = 0
commit(0){3,4}||commit(y){1,2} if x⊕ b1 = 0 and c1 ⊕ b4 = 1
commit(y){1,2}||commit(0){3,4} if x⊕ b1 = 1 and c1 ⊕ b4 = 1
commit(y){3,4}||commit(0){1,2} if x⊕ b1 = 1 and c1 ⊕ b4 = 0

10. Bob executes a private reverse selection using b1. Let T0 be the result and T1

be the pair that is not selected.

T0 =

commit(0){1,2} if x = 0 and c1 ⊕ b4 = 0
commit(0){3,4} if x = 0 and c1 ⊕ b4 = 1
commit(y){1,2} if x = 1 and c1 ⊕ b4 = 1
commit(y){3,4} if x = 1 and c1 ⊕ b4 = 0

The value of T0 is commit(x ∧ y) and its base is randomly set by c1 ⊕ b4.
Since Alice does not know b4, T0 = commit(x ∧ y){1,2},{3,4}|A.
Similarly,

T1 =

commit(y){3,4} if x = 0 and c1 ⊕ b4 = 0
commit(y){1,2} if x = 0 and c1 ⊕ b4 = 1
commit(0){3,4} if x = 1 and c1 ⊕ b4 = 1
commit(0){1,2} if x = 1 and c1 ⊕ b4 = 0

The value of T1 is commit(x̄ ∧ y) and its base is randomly set by c1 ⊕ b4.
T1 = commit(x̄ ∧ y){1,2},{3,4}|A.
Next, execute the base-fixed protocol on these pairs. Then the players obtain
commit(x ∧ y){1,2}.

The protocol is 14 rounds since the first step of the base-fixed protocol is
executed by Bob. The number of cards is four. Since four cards are necessary
to input x and y, the number of cards is the minimum. The correctness of the
output value is shown in the protocol, thus we show the security.

Theorem 2. The AND protocol is secure.

Proof. First, we show the security for Bob. Since Bob watches Alice, Bob knows
the values in Steps 1, 2, 4, 5, 7, 9, 10 and Steps 1, 3, and 4 of the base-fixed
protocol. Bob thus sees ai, bi, bri, x ∧ y ⊕ br1 ⊕ cr1, x̄ ∧ y ⊕ br2 ⊕ cr2, and ((
0 ⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x⊕ a1 ⊕ b1 = 1)). Bob can obtain no information about

14 No Author Given

the secret input and output values since the values of cards are randomized by
c2, c3, cr1, or cr2 that are unknown to Bob.

From the bases of the cards, Bob obtains no information since the bases of
two randomized values, 0⊕ a2 ⊕ b2 ⊕ c2 and y⊕ a3 ⊕ b3 ⊕ c3 (or y⊕ a2 ⊕ b2 ⊕ c2
and 0 ⊕ a3 ⊕ b3 ⊕ c3) are randomized by unknown value c1. The bases of two
randomized values, x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 are randomized by
c1 ⊕ b4 but c1 is unknown to Bob.

Next, we show the security for Carol. Since Carol watches Bob, Carol knows
the values in Steps 2, 3, 5, 6, 7, 8, 10 and Steps 1, 2, 4, and 5 of the base-fixed
protocol. Carol thus sees bi, ci, bri, cri, x⊕ a1 ⊕ b1, 0⊕ a2 ⊕ b2, y ⊕ a3 ⊕ b3, and
((0⊕ a2 ⊕ b2 ⊕ c2 and y ⊕ a3 ⊕ b3 ⊕ c3 if x⊕ a1 ⊕ b1 = 0) or (y ⊕ a2 ⊕ b2 ⊕ c2
and y ⊕ a3 ⊕ b3 ⊕ c3 if x ⊕ a1 ⊕ b1 = 1)). From the cards, Carol obtains no
information about the secret input values since the values are randomized by
unknown values a1, a2, or a3.

About the bases of the cards, Carol knows whether she set commit(0){1,2}||
commit(y){3,4} or commit(0){3,4}||commit(y){1,2} in Step 3 and both two base
randomizations by Carol and Bob, thus she knows whether S7||S8 is commit(0)||
commit(y) or commit(y)||commit(0) and each commitment is made by {1, 2}
or {3, 4}. However, Carol cannot see the private reverse cut by Alice in Step 9,
Carol cannot know which pair is selected as the final result thus no informa-
tion is known to Carol. Since Alice sets the base to {1, 2}, Carol cannot know
information about the secret input values from the base of the final result.

Last, we show the security for Alice. Alice knows the values in Steps 1, 3, 4,
6, 8, 9, and Steps 2, 3, and 5 of the base-fixed protocol. Alice thus sees ai, ci,
cri, x⊕ a1 ⊕ b1, x ∧ y ⊕ br1 ⊕ cr1, and x̄ ∧ y ⊕ br2 ⊕ cr2, and ((0⊕ a2 ⊕ b2 ⊕ c2
and y⊕ a3 ⊕ b3 ⊕ c3 if x⊕ a1 ⊕ b1 = 0) or (y⊕ a2 ⊕ b2 ⊕ c2 and y⊕ a3 ⊕ b3 ⊕ c3 if
x⊕ a1 ⊕ b1 = 1)). From the revealed cards, Alice obtains no information about
the secret input and output values since each value is randomized by unknown
value b1, b2, b3, br1, or br2.

Alice knows whether S3||S4 is commit(0){1,2}||commit(y){3,4} or commit(y){3,4}||
commit(0){1,2}. Alice also knows the bases of each pair of S5||S6. Though Al-
ice knows the bases of S5||S6, Bob’s base change using b4 is unknown to Alice.
Thus, the bases of T0 and T1 are random for Alice because of b4. When Alice
sees x ∧ y ⊕ br1 ⊕ cr1 and x̄ ∧ y ⊕ br2 ⊕ cr2 in Step 3 of the base-fixed protocol,
the bases are randomized by c1 ⊕ b4. Thus, Alice obtains no information from
the bases of the commitments. ⊓⊔

3.3 Copy protocol

Next, we show a new copy protocol by three players.

Protocol 6 (Three player copy protocol)
Input: commit(x){1,2} and two new cards 3 and 4.
Output: commit(x){1,2} and commit(x){3,4}

1. Alice executes a private random bisection cut on commit(x){1,2} using ran-
dom bit a. The result is commit(x⊕ a){1,2}.

Title Suppressed Due to Excessive Length 15

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} using
random bit b. The result is commit(x⊕ a⊕ b){1,2}.

3. Carol executes a private reveal on commit(x⊕ a⊕ b){1,2} and sees x⊕ a⊕ b.
Carol privately makes commit(x⊕ a⊕ b){3,4}.

4. Alice executes a private reverse cut on each of the pairs using a. The result
is commit(x⊕ b){1,2} and commit(x⊕ b){3,4}.

5. Bob executes a private reverse cut on each of the pairs using b. The result is
commit(x){1,2} and commit(x){3,4}.

The protocol is five rounds.

Theorem 3. The copy protocol is secure.

Proof. Alice sees a and x⊕ a⊕ b. Bob sees a and b. Carol sees b and x⊕ a⊕ b.
Thus no player knows the secret value x. ⊓⊔

3.4 XOR protocol

Since AND and copy protocols are shown and NOT is obvious, any Boolean
function can be realized by the combination of these protocols. XOR protocol is
shown because the realization of XOR is simple.

Protocol 7 (Three player XOR protocol)

Input: commit(x){1,2} and commit(y){3,4}.

Output: commit(x⊕ y){1,2}.

1. Alice executes a private random bisection cut on commit(x){1,2} and commit(y){3,4}

using the same random bit a ∈ {0, 1}. The result is commit(x⊕ a){1,2} and
commit(y ⊕ a){3,4}.

2. Bob executes a private random bisection cut on commit(x ⊕ a){1,2} and
commit(y ⊕ a){3,4} using the same random bit b ∈ {0, 1}. The result is
commit(x⊕ a⊕ b){1,2} and commit(y ⊕ a⊕ b){3,4}.

3. Carol executes a private reveal on commit(y⊕a⊕b){3,4}. Carol sees y⊕a⊕b.
Carol executes a private reverse cut on commit(x⊕a⊕b){1,2} using y⊕a⊕b.
The result is commit((x⊕ a⊕ b)⊕ (y ⊕ a⊕ b)){1,2} = commit(x⊕ y){1,2}.

The protocol is three rounds. The protocol uses four cards. Since any protocol
needs four cards to input x and y, the number of cards is the minimum.

Theorem 4. The XOR protocol is secure.

Proof. Alice sees a and y ⊕ a⊕ b. Bob sees a and b. Carol sees b and y ⊕ a⊕ b.
Thus no player knows the secret value y. ⊓⊔

16 No Author Given

4 Conclusion

This paper showed AND, XOR, and copy protocols with private operations that
use a standard deck of cards when the players are malicious. The protocols are
executed by three players and each player watches another player to prevent
malicious private operations. The numbers of cards used by the protocols are
the minimum. One of the remaining problems is obtaining protocols with two
players with the help of additional tools such as envelopes. Another remaining
problem is a false alarm detection protocol.

References

1. Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based
majority voting protocol with three inputs. In: 2020 International Symposium on
Information Theory and Its Applications (ISITA). pp. 377–381. IEEE (2020)

2. Abe, Y., Hayashi, Y.i., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Generation Computing 39,
97–114 (2021)

3. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Proc. of EUROCRYPT ’89, LNCS Vol. 434. pp. 208–217 (1990)

4. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T.,
Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for
makaro. In: Proc. of 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS 2018), LNCS Vol.11201. pp. 111–125 (2018)

5. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: Secure computation with
playing cards (2013), http://cdchawthorne.com/writings/secure playing cards.pdf

6. Dumas, J.G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Inter-
active physical zero-knowledge proof for norinori. In: Proc. of 25th International
Computing and Combinatorics Conference(COCOON 2019), LNCS Vol. 11653. pp.
166–177. Springer (2019)

7. Dvořák, P., Kouckỳ, M.: Barrington plays cards: The complexity of card-based
protocols. arXiv preprint arXiv:2010.08445 (2020)

8. Francis, D., Aljunid, S.R., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Necessary
and sufficient numbers of cards for securely computing two-bit output functions.
In: Proc. of Second International Conference on Cryptology and Malicious Secu-
rity(Mycrypt 2016), LNCS Vol. 10311. pp. 193–211 (2017)

9. Hashimoto, Y., Nuida, K., Shinagawa, K., Inamura, M., Hanaoka, G.: Toward
finite-runtime card-based protocol for generating hidden random permutation
without fixed points. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 101-A(9), 1503–1511 (2018)

10. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure group-
ing protocol using a deck of cards. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences 101(9), 1512–1524 (2018)

11. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a ran-
dom permutation without fixed points. In: Proc. of 3rd Int. Conf. on Mathematics
and Computers in Sciences and in Industry (MCSI 2016). pp. 252–257 (2016)

12. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Proc. of 14th International
Conference on Unconventional Computation and Natural Computation(UCNC
2015), LNCS Vol. 9252. pp. 215–226 (2015)

Title Suppressed Due to Excessive Length 17

13. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Proc. of
Asiacrypt 2017, Part III, LNCS Vol. 10626. pp. 126–155 (2017)

14. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology, Germany (2019)

15. Koch, A.: The landscape of optimal card-based protocols. Mathematical Cryptol-
ogy 1(2), 115–131 (2021)

16. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. New Generation Computing 39(1), 115–158 (2021)

17. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography.
In: Proc. of 10th International Conference on Fun with Algorithms (FUN 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

18. Koch, A., Walzer, S.: Private function evaluation with cards. New Generation
Computing 40(1), 115–147 (2022)

19. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Proc. of Asiacrypt 2015, LNCS Vol. 9452. pp. 783–807
(2015)

20. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input and protocol
with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) Proc.
of 16th International Computer Science Symposium in Russia (CSR 2021), LNCS
Vol. 12730. pp. 242–256. Springer International Publishing, Cham (2021)

21. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy proto-
cols using only random cuts. In: Proceedings of the 8th ACM on ASIA Public-Key
Cryptography Workshop. pp. 13–22. APKC ‘21, Association for Computing Ma-
chinery, New York, NY, USA (2021)

22. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theoretical Computer Science 888, 41–55 (2021)

23. Manabe, Y.: Survey: Card-based cryptographic protocols to calculate primitives
of boolean functions. International Journal of Computer & Software Engineering
27(1), 178 (2022)

24. Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions
using private operations. In: Proc. of 32nd International Workshop on Combina-
torial Algorithms (IWOCA 2021), LNCS Vol. 12757. pp. 469–484. Springer (2021)

25. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Proc. of 18th International Colloquium on The-
oretical Aspects of Computing (ICTAC 2021), LNCS Vol.12819. Springer (2021)

26. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. New Generation Computing 40(1), 67–93 (2022)

27. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. IACR
Cryptology ePrint Archive, Report 2015/1031 (2015)

28. Miyahara, D., Hayashi, Y.i., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of yao’s millionaire protocol. Theoretical Computer Science 803, 207–221
(2020)

29. Miyahara, D., Robert, L., Lafourcade, P., Takeshige, S., Mizuki, T., Shinagawa, K.,
Nagao, A., Sone, H.: Card-based zkp protocols for takuzu and juosan. In: Proc.
of 10th International Conference on Fun with Algorithms (FUN 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

30. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for kakuro. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 102(9), 1072–1078 (2019)

18 No Author Given

31. Mizuki, T.: Applications of card-based cryptography to education. In: IEICE Te-
chinical Report ISEC2016-53. pp. 13–17 (2016), (In Japanese)

32. Mizuki, T.: Card-based protocols for securely computing the conjunction of mul-
tiple variables. Theoretical Computer Science 622, 34–44 (2016)

33. Mizuki, T.: Efficient and secure multiparty computations using a standard deck
of playing cards. In: Proc. of 15th International Conference on Cryptology and
Network Security(CANS 2016), LNCS Vol.10052. pp. 484–499. Springer (2016)

34. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Proc. of 12th International Conference on Unconventional Computing and Natural
Computation (UCNC 2013), LNCS Vol. 7956. pp. 162–173 (2013)

35. Mizuki, T., Komano, Y.: Information leakage due to operative errors in card-based
protocols. Information and Computation 285, 104910 (2022)

36. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Proc. of Asiacrypt 2012, LNCS Vol.7658. pp. 598–606 (2012)

37. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security 13(1), 15–23
(2014)

38. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Proc. of 7th In-
ternational Conference on Fun with Algorithms(FUN2014), LNCS Vol. 8496. pp.
313–324 (2014)

39. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 100(1), 3–11 (2017)

40. Mizuki, T., Sone, H.: Six-card secure and and four-card secure xor. In: Proc. of 3rd
International Workshop on Frontiers in Algorithms(FAW 2009), LNCS Vol. 5598.
pp. 358–369 (2009)

41. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Efficient generation of a card-
based uniformly distributed random derangement. In: Proc. of 15th International
Workshop on Algorithms and Computation (WALCOM 2021), LNCS Vol. 12635.
pp. 78–89. Springer International Publishing, Cham (2021)

42. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve million-
aires’ problem with two kinds of cards. New Generation Computing 39(1), 73–96
(2021)

43. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a
card-based three-input voting protocol utilizing private permutations. In: Proc. of
10th International Conference on Information Theoretic Security (ICITS 2017),
LNCS Vol. 10681. pp. 153–165 (2017)

44. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundamenta Informaticae 38(1,
2), 181–188 (1999)

45. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Proc. of 15th International Conference on Theory and Ap-
plications of Models of Computation(TAMC 2015), LNCS Vol. 9076. pp. 110–121
(2015)

46. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Securely computing three-input
functions with eight cards. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 98(6), 1145–1152 (2015)

47. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Proc. of 2nd International Conference on Theory
and Practice of Natural Computing(TPNC 2013), LNCS Vol. 8273. pp. 193–204
(2013)

Title Suppressed Due to Excessive Length 19

48. Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols
using unequal division shuffles. Soft Computing 22(2), 361–371 (2018)

49. Ono, H., Manabe, Y.: Efficient card-based cryptographic protocols for the mil-
lionaires’ problem using private input operations. In: Proc. of 13th Asia Joint
Conference on Information Security(AsiaJCIS 2018). pp. 23–28 (2018)

50. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Generation Computing 39(1), 19–40 (2021)

51. Ono, H., Manabe, Y.: Minimum round card-based cryptographic protocols using
private operations. Cryptography 5(3) (2021)

52. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based zkp for connec-
tivity: Applications to nurikabe, hitori, and heyawake. New Generation Computing
40(1), 149–171 (2022)

53. Ruangwises, S., Itoh, T.: And protocols using only uniform shuffles. In: Proc. of
14th International Computer Science Symposium in Russia(CSR 2019), LNCS Vol.
11532. pp. 349–358 (2019)

54. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. New Generation Computing 39(1), 3–17 (2021)

55. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theoret-
ical Computer Science 895, 115–123 (2021)

56. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theoretical Computer Science 887, 99–110 (2021)

57. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for sudoku. Theoretical Computer Science 839, 135–142 (2020)

58. Shinagawa, K., Mizuki, T.: The six-card trick:secure computation of three-input
equality. In: Proc. of 21st International Conference on Information Security and
Cryptology (ICISC 2018), LNCS Vol. 11396. pp. 123–131 (2018)

59. Shinagawa, K., Mizuki, T.: Secure computation of any boolean function based
on any deck of cards. In: Proc. of 13th International Workshop on Frontiers in
Algorithmics (FAW 2019), LNCS Vol. 11458. pp. 63–75. Springer (2019)

60. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any boolean circuit. Discrete Applied Mathematics 289, 248–261 (2021)

61. Shinoda, Y., Miyahara, D., Shinagawa, K., Mizuki, T., Sone, H.: Card-based covert
lottery. In: Proc. of 13th International Conference on Information Technology and
Communications Security(SecITC 2020), LNCS Vol. 12596. pp. 257–270. Springer
(2020)

62. Takashima, K., Abe, Y., Sasaki, T., Miyahara, D., Shinagawa, K., Mizuki, T., Sone,
H.: Card-based protocols for secure ranking computations. Theoretical Computer
Science 845, 122–135 (2020)

63. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Natural Computing 21(4), 615–628 (2022)

64. Toyoda, K., Miyahara, D., Mizuki, T., Sone, H.: Six-card finite-runtime xor proto-
col with only random cut. In: Proc. of the 7th ACM Workshop on ASIA Public-Key
Cryptography. pp. 2–8 (2020)

65. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: Proc.
of 2018 International Symposium on Information Theory and Its Applications
(ISITA). pp. 218–222. IEEE (2018)

66. Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences
E103.A(11), 1296–1298 (2020)

