応用化学科特別講演会

高分子集合体の構造・機能解析 -木も見て森も見て考えよう-

身の回りの高分子

我々の身の回りは高分子であふれていて、高分子なしの生 活はあり得ない!

金属

高分子

セラミッ クス

複合 材料

研究室の基本姿勢

既存の高分子の構造・物性を詳細に調べる。

高分子の概念ができてからまだ100年。既存の高分子でも、まだ まだ明らかにしないといけない構造・物性が沢山あり、それを解決 することで用途が広がる。(高分子合成を否定している訳ではあり ません。単に自分ができないだけ)

① テーマに基づいて、高分子を多角的に測定

- ② (従来の文献も参考にしつつ) データを解析して結果を分析
- ③仮説を立てて、結果の説明を試みる

※ ①~③を繰り返し

高分子鎖が何本か集まることで何らかの役割を演じる ▶ 高分子の集まり方で物性・機能がどのように変わるかを明らか にする

増粘多糖類の役割

増粘多糖類---粘度を上げる目的で食品に添加される多糖類 具体的な用途:ドレッシング、たれ、ゼリーなど

食品に絡んで味をつける (化学的な味)、適度な食感を与える (物理的な味)

キサンタンとは?

- キサンタンは微生物が生産する2重らせん多糖類で食品、化粧品などの増粘 剤「キサンタンガム」として使用されている。
- 2重らせんによってキサンタンは非常に剛直となり、高い増粘作用をもたらす。
- ② 2重らせんは低イオン強度下で加熱すると解け (変性)、高イオン強度・低温に
 すると巻き戻す (再性)。
- ← それに伴い粘度も変化するので実用上重要

キサンタンの構造・物性解析

- ◆ キサンタンは多くの身近な製品に利用されている。
- 実際にキサンタンを扱っている企業の研究者から、キサンタンの分析方法、 管理方法などに関して相談を受け、共同研究に発展した例もあり、産業界からも興味を持ってもらえる。
- 今後は、基礎的な研究に留まらず、実用面を重視した研究(溶解時間の短縮、溶解過程での物性変化、長期保管時の安定性、ロットごとの物性の不安定性の回避など)にも広げていきたい。

(非変性) キサンタンに対する静的光散乱測定

みみず鎖

剛直な高分子 (主鎖にベンゼン環・共役系・らせん 構造を持つ) では回転角の自由度は制約される

- ▶ 高分子鎖を一定の堅さを持ったワイヤーのように 捉える
- 自由回転鎖を結合長bを1/2倍にして、結合数nを2 倍に、(1+cosθ)を1/2倍にする
- ② b→0, n→∞, 1+cosq→0の極限を取る
- ③ ただし、nb (= 高分子鎖の全長, L)とb/(1+cosq) (= 持続長, q)は一定と言う制約を設ける
- な
 gとM
 L
 (
 = M/L
)
 を
 与
 え
 れば、
 <S²
 >を
 計算で
 きる
- ▶ 幅広い分子量でMと<S²>を測り、実測値を再現す るようにqとM を決める。

$$\langle S^2 \rangle = \frac{qL}{3} - q^2 + \frac{2q^3}{L} - \frac{2q^4}{L^2} \left(1 - e^{-L/q}\right)$$

Q. 体重40 kgの人は痩せているか?

- A どちらとも言えない。(身長160 cmの大人な ら痩せ過ぎ、110 cmの子供なら太り過ぎ)
- 体重だけではなく身長も測ることで初めて痩 せているかどうか分かる。
- 高分子の広がりの分子量依存性を測ると、 高分子鎖の剛直性など、分岐の有無分かる。

(自由連結鎖なら両末端間距離は分子量の 0.5乗、棒状なら1乗に比例)

- ポリスチレン (屈曲性鎖)
 良溶媒 (トルエン) 中の方がθ溶媒 (シクロへ キサン) 中より広がっており、勾配も大きい
- ↓ キサンタン (剛直性高分子)

低分子量では勾配がきつい (棒状に近い) が、高分子量では緩やか (自由連結鎖に近 づく) になる

- 1. Sato et al. *Macromolecules* **1984**, *17*, 2696.
- 2. Fetters et al. J. Phys. Chem. Ref. Data 1994, 23, 619.

(非変性) キサンタンに対する静的光散乱測定

再性条件の比較

 Kawakami et al. *Carbohydr. Polym.* 1991, *14*, 189.
 再性によってモル質量分布が広

がり、1-3量体が共存

2. Oviatt & Brant *Macromolecules*, **1994**, *27*, 2402.

再性によってキサンタン溶液の粘 度が上昇 (会合体の形成を強く示 唆)

3. Capron et al. *Polymer*, **1997**, *38*, 5289.

再性によって2本のヘアピン鎖に なる

再性挙動が定まらないのはキサ ンタンの濃度・モル質量によって 異なるからでは?

円偏光二色性 (CD) 測定

右円偏光と左円偏光の紫外・ 可視吸光スペクトルの差 (円偏 光二色性)を測定する。

- ◆ キラリティーを持つと (キサンタンの場合、二重らせんを巻くと)
 円偏光二色性が現れる。
- キサンタンを含む水溶液のCD スペクトルを測定することで、ど の程度らせんを巻いているか、 ランダムな構造になったかが分 かる。

キサンタンの局所的な構造 (木を見る) ¹³

- ◆ 変性に伴って円偏光二色性スペクトルは変化したが、再性時に は元に戻った。
- ◆ キサンタンの局所的構造 (2重らせん構造) は非変性体と再性 体でほぼ等しい。

Matsuda et al. Polym. J. 2009, 41, 526.

SEC-MALS測定

普通のSECで用いている検出器は溶出する 高分子の濃度だけを検出

↓ 検出器に多角度で測定できる静的光散乱計 (multi-angle light scattering meter, MALS) を追加する

SECは十分に希薄な溶液で測定するので、

$$\frac{Kc}{R_{\theta}} = \frac{1}{M_{w}} \left(1 + \frac{1}{3} \left\langle S^{2} \right\rangle_{z} q^{2} + \cdots \right)$$

a: 溶離液, b: ポンプ, c: 溶離液 フィルター, d: インジェクター, e: SECカラム, f: 多角度光散乱 計, g: 屈折率計, h: 廃液溜め, 矢印: 溶離液が流れる方向, 太線: ステンレスチューブ

SEC-MALS測定の利点と欠点

利点

- 今子量分別された各成分ご との絶対分子量、回転半径 が一遍に求められる。(分別 された非変性キサンタンでも 再性後に分布が狭いとは限 らない)
- * 光学精製が容易 (通常の GPC程度)

欠点

- ② 測定に適した角度、濃度で測 れるとは限らない。(散乱角度 は固定、ピークの端では強度 が弱い)
- テーリング (高粘度試料では カラムで十分に分別できない) の影響で正しい平均分子量、 回転半径が求まらないことが ある。(キサンタンは増粘剤な ので影響大)

キサンタンの分子鎖全体 (森を見る)

SEC-MALSによる再性体のモル質量分布

◆ 希薄溶液の変性・再性 (キサンタン0.1 g L⁻¹, NaCI 0.01M):

モル質量がほぼ半減した。

 濃厚溶液の変性・再性 再性(キサンタン5.0g L⁻¹, NaCI 0.1M):
 モル質量が増加し、分 布が広がり、会合体が 形成された。

Matsuda et al. Polym. J. 2009, 41, 526.

SEC-MALSによる再性体の回転半径

- ◆ 希薄溶液の変性・再性: *M_w*も<*S*²>_z^{1/2}も減少して いるが、基本的に非変 性 (実線)と同じ*M_w*依存 性を示す。
- ② 濃厚溶液の変性・再性: $M_w < S^2 >_z^{1/2} < b = 100 \text{ multiple set}
 </p>

 <math>M_w < S^2 >_z^{1/2} < b = 100 \text{ multiple set}
 </p>

 <math>M_w < S^2 >_z^{1/2} < b = 100 \text{ multiple set}
 </p>

 <math>S^2 >_z^{1/2} < S^2 <_z^{1/2} < b = 100 \text{ multiple set}
 </p>$
- ▶ 分岐構造を持った再性 体の形成を示唆

renatured in concentrated solution
 renatured in dilute solution
 native

Matsuda et al. Polym. J. 2009, 41, 526.

高濃度の変性・再性

提案された変性・再性モデル

変性したキサンタンは 再性で元通り

高キサンタン濃度では 大きな会合体、低濃度 ではモル質量半減

両方を説明できるモデルが必要 (Matsuda et al. Polym. J. 2009, 41, 526.)

原子間力顕微鏡による観察

- < 低モル質量で分子量分布の狭い試料で測定
 </p>

 (非変性時の経路長151 nm)
- モデルと矛盾しない画像が得られた
 Matsuda et al. Polym. J. 2015, 47, 282.

高モル質量キサンタンの再性

- 前述の測定は全て、超音波 照射でモル質量を下げ、分 別で分布を狭めた試料を使 用している。
- ・ 光散乱測定: 散乱強度の角度依存性がより低角度で直線から逸脱
- 固有粘度測定:ずり速度依 存性が現れる

- 低モル質量化→増粘作用が 低下
- 狭いモル質量分布→手間が かかるが増粘剤として得ら れる利点がない
- ▶ 実用的なキサンタンではわ ざわざ低モル質量化・分布 低下させない

低モル質量化・分布低下さ せないキサンタンの変性・再 性挙動を調べたい。

高濃度で再性した場合のモル質量依存性

Matsuda et al. Polym. J. 2009, 41, 526.

未分別 (高モル質量) 試料の粘度測定

キサンタンの分子鎖 全体 (森を見る)

- 高モル質量試料では ずり速度の影響を受 ける。
- 4球蛇管式粘度計で 測定。
 - 毛細管を長くして ずり速度を下げ る。
 - 4つの液溜めで ずり速度依存性 を測定する。

hpga $2\eta I$

<S²>と[η]のモル質量依存性

- ◆非変性試料はほぼ実線上に乗っている。
- ◆ 再性試料はM_wが増加している が同じM_wの非変性試料よりは <S²>_zと[η]が小さい。
- ◆非変性時のM_wが小さい方がM_w 、<S²>_z、[η]の増加が著しい。

実線:非変性試料に対する文献値 (Sato et al. *Polym. J.* **1984**, *16*, 341.)

- ◆非変性時のM_wが小さい方 が*M*_w、<*S*²>₇、[η]の増加が 著しい。
- ◆モル質量分布の影響は大き くない。

na: 非変性試料 re: 再性試料

モル質量と再性の関係(予想)

- 再性」が優先
- ▶ M_w、<S²>_z、[η]の増加が鈍い

低濃度で再性した場合のモル質量依存性

Matsuda et al. Polym. J. 2009, 41, 526.

SEC 測定 と解析

 静的光散乱でM_wを求め た非変性キサンタンで、 GPCと静的光散乱でM_w が同じになるように較正 曲線を決定

- ② 再性キサンタンでも同じ
 較正曲線を用いてモル質
 量を決定
- ◆ 静的光散乱でM_wを求め た試料を使うことで「換算 分子量」ではなく真のモル 質量が得られる。

ただし、分岐の影響を無視している。

(分岐高分子の較正曲線は同種の分岐がない高分子とは異なる)

⇐ 変性・再性によってM_wは減少するかあまり変わらなかったので、分岐会合体の割合は十分に小さいと考えた。

SECから求めたモル質量分布

非変性時のM_wが100万程度でM_wの減少が顕著で、それより大き いM_wでも小さいM_wでも減少幅が小さい。

⇐ 少しでも (CDで検知できない程でも) 二重らせんが残っていれば バラバラの2本鎖にならないので、M_wが高い方がM_wの減少幅が 小さい。

二重らせんを巻けない部分に全くひずみをかけないためには半径21 nm以 上の円になる必要がある。(コイル状態で9.90万、二重らせんで19.8万以上) この部分の長さは全長に依存しない→全長が短い程二重らせんを巻きにく い部分の割合が高まり、ヘアピン構造が安定しない

 $f_{dis} \equiv \frac{2\pi \times 21 \text{nm}}{M_w(\text{single})/M_L(\text{single})}$

実用的な使用環境下における変性・再性

♦ 熱変性・再製したキサンタンの構造は濃度、分子量によって変わる。

