高速道路合流部の渋滞時における 割り込み場所選定手法の構築

Lane-Changing Space Selection at Congested Merging Area

Keiju Nishimura and Hanwool Woo (Kogakuin University)

Introduction

- Automated driving is being put to practical use
- Expected to reduce traffic accidents and ease traffic congestion
- Mixed environment of automated and manually operated vehicles

Baidu $\lceil Apollo Go \rfloor$ (1)

Problem

Current autonomous driving systems have difficulty merging onto congested main lines due to safety considerations

→ Need a system that can be lane-changing

Previous Studies

- Vehicle-to-vehicle communication for lane change at merging area⁽²⁾
 - Sends a message to surrounding vehicles to give way

All vehicles must be equipped with device

- Lane change at merging traffic jams⁽³⁾
 - Building a merging model from human lane-changing data

Lane-changing space have not considered

3

(2)矢島颯斗, 高見一正, "自動運転車と手動運転車混在時の 進路交譲のための車車間通信プロトコルと試作評価", マルチ メディア,分散,協調とモバイル(DICOMO2017)シンポジウム, pp1679-1687 (2017)
 (3) Hanwool Woo, Hiroto Tetsuka and Jongseong Gwak: "Automatic Lane-Changing System on Congested Highway", Journal of Robotics and Mechatronics, Vol.36, No.3 (2024)

Construction a method for selecting interrupt locations without use vehicle-to-vehicle communication

Approach

• Evaluate the possibility on vehicles status and remaining distance

Problem definition

- Assumes two lanes of congested main lane and merging lane
- Ego vehicle equipped with measurement equipment
- Main lane vehicles are human drivers

Method

- Predicts position based on current position and speed
- Evaluate feasibility based on location prediction and remaining distance

Schematics of proposed method

Prediction of position

• Ego vehicle

Travelling within speed and acceleration limits

Prediction of position of ego vehicle

Main lane vehicles

Assumed to run at constant speed and only their positions updated

Prediction of position of main lane vehicles

Merging feasibility assessment

• Determined based on the following four points

1. Space between vehicles

• The greater the distance between vehicles, the higher the assessment

$$\alpha = \min(1, d^t c) \quad \frac{d^t}{c}$$
 Space between vehicles at time t
c : Constant

2. Distance from Ego vehicle to target

• The closer the vehicle is to its ego vehicles, the higher the assessment

$$\beta = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x_s - x_e)^2}{2\sigma^2}\right) \quad \begin{array}{l} x_s \\ x_e \end{array}$$
 Mid-point between vehicles $x_e \end{array}$ Position of ego vehicle x_e

3. Remaining distance

• The shorter the remaining distance, lower the assessment

$$\gamma = \min\left(1, 1 - \left(\frac{x_s - x_e}{r}\right)\right)$$

- x_s : Mid-point between vehicles
- x_e : Position of ego vehicle
- r : Remaining distance

4. Reachable range

• Exclusion from choices when above speed and acceleration limits

Simulation

- Environment where the total length of merging lane is 480m and 240m
- Ego vehicle merge between target vehicles
- Main lane vehicles take different amounts of time to give way

Simulation (Select front)

Red : Ego vehicle Blue : Target vehicles Yellow : Ego vehicle (blinkers-on)

Simulation (Select rear)

Red : Ego vehicle Blue : Target vehicles Yellow : Ego vehicle (blinkers-on)

Problem

- Selected despite shrinking space
 - \rightarrow Proximity to space is the preferred select

Space results

- No change was observed in the two results
- Select a space of about 10 meters

Distance results

• 240m Results were more backward than 480m

Distance from Ego vehicle to target

Safety assessment

• Margin-To-Collision

Indicates whether there is a collision between vehicle (Deceleration : 0.7 G = -6.9 m/s^2)

 x_r : distance between two vehicles v_p : Forward vehicle speed v_f : Rear vehicle Speed $A_p = A_f = -6.9m/s^2$

Safety assessment result

- Margin-To-Collision less than 1
 → Likelihood of collision
- Safe interruptions are possible as a result of Margin-To-Collision

Result of Margin-To-Collision		
	Avg.	Min.
480 m	6.06	3.71
240 m	5.98	3.87

Conclusions

- Lane-changing space selection at Merging Area was proposed
- Evaluate the possibility on vehicles status and remaining distance
- Margin-to-collision found to be highly secure

Future work

• Obtain human lane-changing and compare with proposed results

